


Department of Computer Science
Informatics/Computer Science
Frederik Bajers Vej 7, Building E
DK-9220 Aalborg Ø
Telephone (+45) 9635 8080
http://www.cs.aau.dk

Title:
SCRAML
Student Catalogue for Reviewing And Managing Literature

Theme:
Article Catalogue System

Project period:
Inf1/Dat1, fall semester 2006
September 04th to December 21st

Project group:
d103a

Participants:
Jonatan Riber Andersen
Kasper Stæhr Hornbek
Dan Leinir Jensen
Jacob Korsgaard
Andreas Ibsen
Niels Husted
Jan Jensen

Supervisor:
Dalia Tiesyte

Print run:
9

Pages:
123

Abstract:

The report describes the process of analysis,
design, implementation, testing and docu-
mentation of the SCRAML (Student Cata-
logue for Reviewing And Managing Litera-
ture) system. SCRAML is a tool designed for
managing and discussing literature used in
university projects and the relevance of this
literature to the project.

The system has been developed using
Object-Oriented Analysis & Design and im-
plemented in C# using Object-Oriented Pro-
gramming.

The outcome was a fully functional
client/server-based system with multi-user
support. The system has been exposed
to a usability test. Furthermore parts of
the system were tested using black and
whitebox testing. The tests showed that the
system has a high level of usability and a
low rate of errors.

Appendices (with type):
Usability test tools (7, text)
Analysis and design standards (3, text)
Analysis of del.icio.us (1, text)
Technical Memos (6, text)
iTunes Screenshot (1, image)
Product (1, CD-ROM)

The contents of the report are freely available, however publishing (with source) must happen only by

agreement with the authors.



Preface

The purpose of this project is to acquire experience in using Object Oriented Analysis and
Design (OOA&D), and Object Oriented Programming (OOP) by developing an application
using these disciplines. The OOA&D model (as described in the book Object Oriented
Analysis & Design [6]) is followed strictly, but a waterfall development model was used
as opposed to the suggested iterative approach. This was done at the request of the
lecturers of this semester. For programming the language C# is used in conjunction
with the Microsoft .NET framework. Figures are designed according to Unified Modeling
Language (UML).

Student Catalogue for Reviewing And Managing Literature 3



CONTENTS

I Analysis 7

1. The Task 8
1.1. Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. System Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1. FACTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2. Stakeholder analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1. The current situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2. Rich pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4. Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5. Application domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2. Problem domain 15
2.1. Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. Description of classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2. Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Application domain 21
3.1. Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2. Actors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.3. Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.4. Use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1. Complete list of functions . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2. Specification of complex functions . . . . . . . . . . . . . . . . . . . . . 29

3.3. User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1. Usage aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2. Conceptual model and forms of interaction . . . . . . . . . . . . . . . 32
3.3.3. General interaction model . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.4. Technical platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Strategy for Future Development 36
4.1. Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II Design 37

5. The Task 38
5.1. Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2. Corrections to the Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3. Quality Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 SCRAML



Contents

6. Technical Platform 40
6.1. Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2. System Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3. System Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4. Design Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7. Architecture 42
7.1. Design criteria and requirements crucial for the architecture . . . . . . . . . 42
7.2. Generic design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3. Component Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4. Exemplary Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4.1. Register user sequence diagram . . . . . . . . . . . . . . . . . . . . . . 47
7.4.2. Login sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.4.3. Create project sequence diagram . . . . . . . . . . . . . . . . . . . . . 48

8. Components 49
8.1. General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2. Descriptions of Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2.1. PersistentData Component . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2.2. Catalogue Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2.3. AccessHandler Component . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.4. Server-API Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.2.5. Client-API Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2.6. The Graphical User Interface Component . . . . . . . . . . . . . . . . 52

8.3. Interaction spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3.1. Create user dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.3.2. The Literature entry window . . . . . . . . . . . . . . . . . . . . . . . . 53
8.3.3. Presentation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9. Programming 57
9.1. Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

9.1.1. Program execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
9.1.2. GUI: CreateNewUserForm . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.1.3. The AccessHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.1.4. Catalogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1.5. PersistentData: XMLHandler . . . . . . . . . . . . . . . . . . . . . . . . 60

III Implementation 62

10.Implementation 63
10.1.Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.2.Implementation vs. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
10.3.The GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

10.3.1.The Main Window: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.3.2.Project View: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.3.3.Literature View: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
10.3.4.Custom Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV Test 73

Student Catalogue for Reviewing And Managing Literature 5



Contents

11.Unit tests 74
11.1.Blackbox testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
11.2.Whitebox testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

12.Usability test 80
12.1.Plan for the usability test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
12.2.Analysis of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

12.2.1.Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

V Study Report 92

13.Academic reflection 93
13.1.Project and team management . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
13.2.System and the domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
13.3.Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
13.4.Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
13.5.Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

13.5.1.Data storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
13.6.Unit testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
13.7.Usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
13.8.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VI Appendix 106

A. Usability test 107
A.1. Test documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2. Test introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3. Tasks for the usability test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.4. Exercises for the usability test . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.5. Expected solutions to the exercises . . . . . . . . . . . . . . . . . . . . . . . . 112
A.6. Debriefing questions for the usability test . . . . . . . . . . . . . . . . . . . . 113

B. Analysis and design standards 114

C. Technical Memos 118
C.1. Passing data from server to client . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.2. Using a DataTable structure for storing Tags . . . . . . . . . . . . . . . . . . 118
C.3. Saving DateTime using XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
C.4. Error Handling in Persistant Data . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.5. UniquelyIdentifiable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
C.6. XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

D. Role model analysis of del.icio.us 120
D.1. Folksonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.2. Item relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.3. Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.4. iTunes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 SCRAML



Part I

Analysis

The analysis document describes the process of defining a system
to solve the problem at hand. First off a preliminary system def-
inition is described, then the problem domain is clarified and key
objects involved, and their behavior. Finally the application domain
is described, usage and users of the system defined, as well as key
functions of the program.



CHAPTER

1

The Task

1.1. Purpose

This document describes the development of a literature management system also re-
ferred to as article cataloging system. The main purpose of this system, is to ease the
administration of literature sources in university projects. The motivation and starting
point for this project is the following project-proposal:

The goal of this project is to develop a catalogue system for text material used
in an academic project. During an academic project such as a semester project
or a PhD project a vast amount of material is read. Some of this material is cited
in the project, some is forgotten, and some is never used. It is often the case that
not all members of the project read all the material. To allow the participants
of the project to easily share information about the read material a catalogue
system is proposed. The catalogue system should allow the participants of a
given project to enter information about the read material such as summaries,
notes, and applicability in the current project. The system should be able to store
information about different kinds of content such as books, articles, technical
reports etc. The material might have cross-references and it should be possible
to specify this. The content differs in some areas but has a wide range of similar
characteristics. The system should be able to store and retrieve the catalogue
from disk. It should be possible for different users to register material and
comments in the system, but it can be assumed that only a single user is using
the system at once (on a single machine).

1.2. System Definition

The system definition is the first platform for an agreement between the customer and
the developer. In this project we take on the role as developers, while the customer is
imaginary. The system definition is a short text that in general terms states fundamental
decisions about the system.

1.2.1. FACTOR

FACTOR [6] is an acronym for criteria that a system definition must conform to to be
a robust reference for the development process. The criteria for the article cataloguing
system are:

Functionality The main functionality of the system is administration of semester project
groups’ literature resources (books, journals, reports, articles, web content etc.),
i.e. cataloguing information about literature entries and attaching summaries, re-
views and comments.

Application domain The system is to be used internally in a student project group and
across student project groups and their supervisors at a university.

8 SCRAML



1.2. SYSTEM DEFINITION

Conditions In order for the system to have any right to exist it is important that it has
high utility and that the system is easy and satisfying to use for the people in the
application domain.

Technology The system is implemented in the programming language C#, and is sup-
posed to run on students’ computers. This is why the technology demand is a
standard PC supporting the .NET framework1.

Objects The objects that the system has to handle are: Projects, users, literature entries,
literature suggestions, reviews and comments.

Responsibility Our assumption is that a group during a semester project period studies
large amounts of literature, and that it can be difficult to achieve an overview and
basic understanding of it. This is why the system is meant to be a tool for shar-
ing of knowledge of literature resources in a semester project group (including its
supervisors) and across other project groups.

The system definition

An IT-system intended to be used as a tool for sharing of knowledge of litera-
ture resources in and across student project groups at a university. The purpose
of the system is to catalogue information about literature entries such as titles,
authors and year of publication of books, articles, journals, reports, other pa-
pers and web content. The system is intended to be used in a semester project
by both the project group members and the group’s supervisor(s) and it should
be possible to retrieve literature information from finished projects and other on-
going projects. The assumption is that a group during a semester project period
studies large amounts of literature, and that it can be difficult to achieve an
overview and basic understanding of it. Not all encountered literature is appli-
cable in the current project, however it might be in a later project and it can be
hard to remember the content and scope of a specific book. Furthermore not ev-
ery group member is familiar with every piece of literature. On this background
the system should assist group members in affiliating a project with catalogued
information about their literature including attached summaries, comments and
reviews. Afterwards it should be possible for a group member to search for and
retrieve this information. In terms of system properties it should be easy and
satisfying to use and it should be able to run on a standard PC supporting the
.NET framework.

1.2.2. Stakeholder analysis

The Oxford Online Dictionary [1] defines a stakeholder as

a person with an interest or concern in something.

It is common practice to divide stakeholders into several categories, depending on how
directly they influence the project/entity. This is why we have primary, secondary, ter-
tiary, and facilitating stakeholders. Our focus in the development process is centered on
the former two most influential categories.

1According to [7].

Student Catalogue for Reviewing And Managing Literature 9



Chapter 1. The Task

Primary stakeholders:

University students in a project group: The students are the main participants in the ap-
plication domain, and thus the primary intended users of our system. It is our goal
to develop a system that aids managing their project literature.

Project group supervisors: The supervisors might make literature suggestions to the group,
or be interested in whether the applied literature is sufficient and academically ap-
proved.

Secondary stakeholders:

Researchers: If a researcher is working on a similar topic as the project group, he/she
might be interested in exchanging literature references. Furthermore even though
our system is aimed at helping the students, it might be useful amongst profes-
sional researchers as well. However one must assume that such researchers do
not have the exact same demands as students. This is why we delimit our applica-
tion domain to student project groups.

Tertiary stakeholders:

Librarians: In some cases librarians help students obtain literature for a project. If our
system provides a list of previously encountered material, it can ease the librarians’
search process by letting them ignore this material, or inspire them to find related
material.

The faculty: If we assume that an article cataloguing system helps improving the quality
of studies, the faculty might have an interest in applying the system in all groups.

Facilitating stakeholders:

IT-staff: The IT-staff at the university could take the role as the system-administrators of
the system if implemented at the entire faculty. They would probably demand that
the system has low system and maintenance requirements.

Developers: Obviously the developers have an interest in the succes of the system as
well as the users, but because developers are not part of the application domain,
they are only categorized as facilitating stakeholders.

1.3. Context

In the following section we address the relevant circumstances in the context of our
system. The main goal of this section is to explicitate the situation, and create an
overview of the work tasks in our article cataloguing system.

1.3.1. The current situation

In this first section we provide by example a description of how the actual student project
work might take place at our own Aalborg University. The purpose is to gain an under-
standing of the flow of literature in a real world project group. Obviously we cannot
take all aspects into account because each project group will do things differently. In

10 SCRAML



1.3. CONTEXT

other words the following are activities that all groups go through (though perhaps in a
different order than the one given below).

At the beginning of a semester the project groups are formed. Afterwards a group
room and one or more supervisors are allocated to each group. Large parts of the project
work is carried out in the group room. Each group decides on a project topic based
on a catalogue of project proposals written by the supervisors. After project plan and
report content outline are devised, the next step is gathering of information. Resources
are retrieved by the group members by visiting libraries and searching the Internet and
different databases. Furthermore a group receives literature suggestions by attending
the various courses offered.

When the group members have obtained some literature they either utilize them right
away or store them for future use. In case a piece of literature is in the shape of web
content or in another electronic format it is either stored on a hard drive as a link or as
an electronic copy. In case it is a book, journal, a printout (of for instance electronically
available material) or another physical piece of literature, the group members have to
store it in a physical space – typically the group room or at group members’ private
address.

The process of searching for new or previously encountered literature is often ongoing
during most of a project period, for which reason the need for managing the literature is
present at all times.

After the gathering of information it is time for a project group to write the project
report. This is a prolonged task that to a considerable extent is based on the obtained
literature. For that reason it is important that the group members have swift access to
both information about and to the literature itself. However many issues can obstruct
this accessibility; for instance when several members searches for literature it may be
hard for the individual members and the group as a whole to keep track of who have
come across which material, and whether specific material is applicable in the project.

Furthermore a group member, who holds a specific book that is needed in a certain
part of the report, may be absent because of illness, and thus the remaining group
members have a problem. Both with regards to the book itself and information about it
– such as title and author names.

Another possible issue can arise when two group members have studied the same
piece of literature and disagree on how relevant it is. They advance their arguments but
settle on extending the decision whether to apply it or not. When they at a later time
return to the same material they might have a hard time remembering the course of
their discussion, and thus have to start from scratch once again.

It is most likely that a project group’s supervisor(s) have some knowledge about the
project topic, and consequently is able to recommend some specific material. However
some difficulties concerning distributing this information to an entire group may occur.

As the time comes when the project groups have to hand in their reports they need to
incorporate a bibliography. If this has not been devised continuously during the project
period, it may be difficult to collect a list of applied literature at this late stage.

1.3.2. Rich pictures

We need to analyze the problem domain, and to highlight the problematic parts of the
project, so it will be possible to eliminate these problems at an early stage in the process.

Our tool to do this is rich pictures. A rich picture is a drawing which expresses an
individual’s personal understanding of a given situation.

A lot of information can be included into a rich picture, so in order to ensure utility it is
important that the main focus remains on the important aspects of the situation. In the

Student Catalogue for Reviewing And Managing Literature 11



Chapter 1. The Task

development of the rich pictures our group made various pictures and then combined
the drawings into a common set of pictures.

Another reason to develop rich pictures is that they provoke the system developers to
develop new ideas. Furthermore the pictures can prove helpful in a situation where the
developers have to communicate with the future users.

It is practical to differentiate between rich pictures that focus on stability (The current
situation), and pictures that focus on change (The future situation) [6].

Focus

Figure 1.1 on the facing page shows a representation of the actual situation – with focus
on how students are categorizing their literature today:

Text books: Literature that the project group studies.

(1) Happy Student: The guy who has read material that he finds relevant to the project.

(2) Neutral Student: The guy who does not know, if the material he has read is relevant
to/usable in the project.

(3) Unhappy Student: The guy who has read a lot of irrelevant material.

(4) Fainted/Passed out Student: He was drunk so he forgot which parts of the literature
that was relevant and interesting. He could also represent a black hole, where
some good sources go without any reason, and maybe he will read material that is
already read by other members of the group.

Change

In figure 1.2 on the next page we have illustrated how we expect our cataloguing system
to aid the project groups in organizing their literature.

Text books: In the beginning of the project a lot of material is read by the members of a
project group.

The light bulbs: When the material is read, the group members decide which parts are
relevant in the current project.

The single computer: The material is categorized in our cataloguing system, where a
group member can input sources, comments, keywords, and a rating based on
how applicable the material is in the project.

The row of four computers: In the last step, it is possible for other group members to
access the cataloguing system on their own computer.

1.4. Problem Domain

The final system should register comments, ratings of relevancy, cross-references, sum-
maries, references to related projects, used and non-used sources, the topic of the cur-
rent project, and participants in the project. The participants can be divided into two
categories: students and supervisors.

12 SCRAML



1.4. PROBLEM DOMAIN

Figure 1.1.: This rich picture illustrates how students are categorizing their literature
today.

Figure 1.2.: This rich picture illustrates how students take advantage by using our cat-
aloguing system.

Student Catalogue for Reviewing And Managing Literature 13



Chapter 1. The Task

The students are the ones who normally submit data about sources to the system.
The supervisors benefit from knowing which sources the group is using, the ability

to suggest sources and to halt the students if they are getting sidetracked with their
literature.

The focus of the system is to ease the work in the project group, and to ensure that
important sources are not lost.

1.5. Application domain

The system must support insertion of various information about sources for university
projects. The students in a project group input pieces of literature relevant to their
current project into the system. This can be articles, books, other projects, websites,
lectures or other types of material. When a student submits material to the system, the
material must be viewable not only to other members of his group and their supervisor,
but also to other users of the system.

Essential tasks of the system

• Register participants

• Manage participants

• Register projects

• Register literature entries

• Manage literature entries

• Distribute information to group-members and supervisors

Actors in the application domain

• The members of any project group

• The supervisors

The items above should be seen as a temporary list of the tasks and actors, and will
be further specified in the following chapters.

14 SCRAML



CHAPTER

2

Problem domain

2.1. Classes

This section describes the classes in the problem domain. These classes are selected
using an iterative approach. The classes are part of the model that contains the in-
formation the system has to manage. Classes are related in the model as pictured on
figure 2.1. We do not use any clusters.

Literature

Comment

Project

Role Reference

Member Review

Suggestion

Supervisor

Person

1

0..*

1..* 1
1

1..*

1

0..*

0..* 1

1

0..*

1

0..*

1

0..* 1

0..*

0..*

1

1 0..1

Figure 2.1.: Class diagram of the problem domain

2.1.1. Description of classes

In the description of each class, all references to the class and other classes are marked
using italics. Each class is described through a general definition, a list of attributes
and a description of the class behavior. The model contains some specializations, only
a single one of these has additional relevant information attached, beyond the relations
to other classes in the model. The additional attributes of review is described in the
description of the reference class.

Student Catalogue for Reviewing And Managing Literature 15



Chapter 2. Problem domain

Person class

See figure 2.2

Figure 2.2.: Statechart diagram and attribute table for the person class

Definition:
The person class describes a person; a person has roles which connect him to
projects, as either a supervisor, or a member of a project group.

Attributes:
Name - Name of the person.
Department - semester - The semester and department person attends. An example
could be Computer Science 3rd Semester.
Email / contact info - Contact information.

Behavior:
When a person is created in the system he has no roles. A person is affiliated with
a project by creating a role for him in the project. That person is active, if he has a
role in an active project. Likewise he is inactive, if he has no roles, or all the projects
he has a role in are submitted and thereby inactive.

Role class

See person class figure 2.2

Definition:
A role is what affiliates a person with a project. There are two specializations of
the role class, which are member and supervisor. A role describes what kind of
relationship a person has with a specific project.

Attributes:
None.

Behavior:
A role is created when a person is affiliated with a project. It is deleted if the
project or the person is deleted. It can also be explicitly deleted, which effectively
disconnects a person from a project.

Literature class

See figure 2.3 on the next page

16 SCRAML



2.1. CLASSES

Figure 2.3.: Statechart diagram and attribute table for the literature class

Definition:
The literature class describes a piece of literature. It contains information about a
specific piece of literature. Examples of literature could be: A book, an article, a
journal, an Internet address, a figure etc.

Attributes:
Authors - Authors of the literature.
Title - The title of the literature.
Literature type - For instance book, report, article or Internet resource.
Year of publication - When was the literature entry published?
Summary - A summary of the literature.
Source - The source of the literature.
ISBN - An ISBN number if available.

Behavior: A piece of literature is entered into the system when a reference to it is
created. It is only deleted if explicitly deleted.

Reference class

See figure 2.4

Figure 2.4.: Statechart diagram and attribute table for the reference class

Definition:
A reference connects a piece of literature to a project. It has two specializations,

Student Catalogue for Reviewing And Managing Literature 17



Chapter 2. Problem domain

review and suggestion. A review is created by a group member and contains a
review of the relevance of the literature to the project that it is referenced to. A
suggestion is made by a supervisor and is a reference to a piece of literature that
the supervisor suggests that the group reads.

Attributes:
Date - The date the reference was made.
Used - A true/false statement that defines whether or not the literature is used in
the project report.
Title - (Review only) The title of the review.
Text - (Review only) The review.
Rating - (Review only) The reviewers rating of the literatures relevance to the related.
Status - Whether the literature is available, in possession of a group member or not
available.

Behavior:
A reference will be deleted if the referenced literature or project is deleted, further-
more a review is deleted upon deletion of the member who created the review and
a suggestion is deleted upon deletion of the supervisor that added the suggestion.

Project class

See figure 2.5

Figure 2.5.: Statechart diagram and attribute table for the project class

Definition:
Describes a project, it contains one or more members, and one or more supervisors.
References to literature are added to the project.

Attributes:
Start / end date - Start date is the date on which the project is begun. The end date
is when the project is submitted.
Subject - The subject of the project.
Title - The title of the project.
Department / semester - The semester and department of the project. An example
could be Computer Science 3rd Semester.
Synopsis - Synopsis of the final report.

Behavior:
A project is created with one or more supervisors and members. After the creation
these roles can be assigned to the project. Assigned roles can also be removed, for

18 SCRAML



2.1. CLASSES

example in case of dropouts or reassignment of supervisors. A project is active when
it has group members assigned and it is finished when the final report has been
submitted. If the project is not expected to be finished, it can be deleted, causing
cascading deletions of references and roles, since we assume that a project which
is not finished does not have at sufficient level of quality.

Comment class

See figure 2.6

Figure 2.6.: Statechart diagram and attribute table for the comment class

Definition:
A piece of text that comments one reference, one piece of literature or another com-
ment. It is created by one person.

Attributes:
Date - The date the comment was made.
Title - The title of the comment.
Text - The text of the comment.

Behavior:
A comment is created by one person and continues to exist until the object, that
the comment belongs to, is deleted. The comment will not be deleted if the creator
is deleted because the comment can have other comments attached.

2.1.2. Events

An event is an abstraction of a process or activity in the problem domain. Identifying
events is crucial as events provide the basis for defining the behaviour of the system.
Table 2.1 on the next page contains the final events of the system.

Student Catalogue for Reviewing And Managing Literature 19



Chapter 2. Problem domain

Event P
ro

je
ct

P
er

so
n

R
o
le

R
ef

er
en

ce

L
it

er
at

u
re

C
o
m

m
en

t

Project created + * +
Project deleted + * + + +
Project submitted + *
Role created * +
Role deleted * + +
Person created +
Person deleted + + +
Reference created + +
Reference deleted + +
Literature reviewed + +
Literature suggested + +
Literature deleted + + +
Literature commented +
Reference commented +
Comment commented +
Comment deleted +

Table 2.1.: Final Event table: To the left the events and to right the objects they affect.
Events marked by + can only occur once, events marked by * can occur more
than once.

20 SCRAML



CHAPTER

3

Application domain

3.1. Usage

The main goal of this section is to describe the usage of the system within the application
domain.

3.1.1. Overview

When a student joins the university he is invited to create a user account in the article
system. This account enables that student to create and be member of projects stored
in the system. At the start of each semester new project groups are formed. After the
groups have been formed one of the members from each group creates a new project in
the system. When the project has been created, the rest of the group members can then
be affiliated with the project in the system by the project creator.

In the beginning of the project a large amount of literature is read by the group. After a
member of the group has found a piece of literature she considers relevant to the project,
he or she adds an entry to the project containing various information about that piece
of literature. Now other members of the group are able to comment on that entry.

In case a piece of literature read by the group is not directly relevant to the project
it can be added to the system itself, instead of the project. It is possible for the project
group to view the list of used literature of former and active project groups.

The supervisor of the group can add an entry to the project with suggested literature.
Finally the group can generate a bibliography for the report by exporting the list of

literature applied in the project.

3.1.2. Actors

This section describes the actors who interact with the system. An actor is an abstrac-
tion of different types of users or systems.

Based on the overview in section 3.1.1 we can identify the possible actors.

Definition of actors

The Group Member (student): A member of a project group is a user of the system. The
user is typically a university student with fair computer qualifications.

The Supervisor: A user can be assigned to a project as supervisor. A supervisor could
typically be a member of the teaching staff. In both cases it would be reasonable to
presume they have fairly good computer qualifications.

The Moderator: There is a need for someone to delete failed projects. If a project never
gets submitted its use of literature might not be valid and therefore not relevant
to other groups. A moderator could typically be a secretary of the department or a
member of the IT-staff (as mentioned in the Stakeholder analysis in section 1.2.2
on page 9.)

Student Catalogue for Reviewing And Managing Literature 21



Chapter 3. Application domain

Personas

Name Andy Gibson
Age 35
Occupation PhD-student
Nationality Danish

Andy Gibson might be a typical user of the system. Andy Gibson is a 35 year old PhD-
student at Aalborg University. He is currently working on his own PhD project ”How to
use computers to generate artificial life forms” a project he has almost finished. Before
he started on his PhD he was working for a local software company for 5 years. Apart
from his PhD he is supervising a number of project groups and master students at the
department of computer science. As a supervisor he often uses an enormous amount of
paper to keep track of how the project groups are doing. He often sends emails to his
project groups with literature suggestions for them to read.

He lives in a small flat with his girlfriend and their one year old boy. As a person he
is very tolerant and honest. He is also a member of the elite part of the Danish National
Guard, but after he became a father, he does not have much spare time.

Andy’s computer skills are good as long that he do not need to work with computer
hardware. He has worked with a lot different operating systems, including Windows
(which he prefers), MacOS and different types of Linux.

Name Brian Jensen
Age 23
Occupation Student
Nationality Danish

Brian Jensen is a 23 year old student at the DAT1/INF1 semester at Aalborg Univer-
sity. His studies aside he works as a consultant in a small computer company, where
his area of expertise is Linux servers and virtual servers. He has been working for the
company for 5 years. When Brian is not studying or working he likes to drink beer with
his friends, work on his own projects and listen to heavy metal. Brian lives in a very
small and very unorganized apartment in the center of Aalborg.

Brian is the type who likes to take the initiative in his project groups and have the
overview of the projects progress. But he is also a bit lazy, and he dislikes writing or
saying the same thing twice.

Brian has a large amount of knowledge about computers; he has been working with
computers since he was 5 years old. But he is impatient; if there is a piece of software
he can not get working within the first 5 minutes he finds something else. Brian really
hates Java and anything programmed in Java and he is chairman of the local ”I hate
Java” society.

3.1.3. Scenarios

Describing the application domain in detail would generate a lot of various information.
This information might not all be relevant to the development process of the system.
Therefore scenarios are a possible way to achieve an appropriate abstraction from tech-
nical detail. During this activity aspects which we would not discover during other anal-
ysis activities become unveiled. The section below is a collection of possible scenarios.

22 SCRAML



3.1. USAGE

When we mention ”the system” we always refer to our article cataloging system.

The scenario

After the project launch the 5th semester Computer Science student John from the
project group x214d creates a user account in the system. At the library he has found
a book called ”AI – a question of perception” which he thinks would come to good use
in x214ds project named ”AI”. Since it is the first time John uses the system, he has
to create a new project called ”AI”. Likewise he must create a new literature entry, in
order to be able to write information (such as authors) about the book into the system.
Furthermore he reviews the book, in the sense that he in textual form explains why he
thinks the book might be relevant to the ”AI” project. At any given time after the project
creation he is able to add as many pieces of literature to the project ”AI” as he wishes.

John then wants to let his groupmates be part of the ”AI” project. To do this he
encourages his group mates to create their own user accounts. When this is done John
associates these user accounts with the project ”AI”.

Afterwards his group mate Allan wants to see which literature related to ”AI” his group
mates have encountered so far. Allan encounters the book ”AI – a question of perception”,
and finds out John has made a comment on which parts of the book is relevant to their
project. Allan already knows the book and he disagrees on John’s point of view and
therefore he makes a new comment to Johns review. He does this by selecting Johns
review, entering his comment and submitting it.

At a certain time during the project period John and Allan’s group mate Ann is writing
a part about artificial perception in the project report, she needs to underpin her asser-
tions with literature references. Ann searches in the system for literature concerning
this topic, finds the information about ”AI – a question of perception”, and realizes that
it could be useful. Ann decides to check whether other project groups with similar topics
have found sources about artificial perception. By doing this she realizes that the neigh-
bor group x216d has been using the book ”Artificial Perception for dummies”, which she
then borrows from the library.

The PhD student Mary is supervisor for the group x214d. After receiving a temporary
edition of the groups report she finds the part about artificial perception insufficient.
Mary has a book that she knows would be suitable in that context. She therefore logs
into the system and adds a suggestion of that particular book to the group.

At a subsequent group meeting Mary tells the group that the part about artificial
perception is not good enough and that she has added a suggestion to the group in the
system. Ann, who wrote the section about artificial perception, locates the suggested
book which enables her to correct the problematic part of the report.

At the end of the semester John, Allan and Ann want to hand in their project with a
full list of literature. To do this they ask the system to generate a BibTex-file1 which they
can apply in their project report. When the ”AI” project has finished it becomes inactive,
but still available in the system, resulting that other future project groups with similar
topics are still able to find literature used in the ”AI” project.

3.1.4. Use cases

Figure 3.1 on the following page depicts the relations between actors and use cases. In
the following the use cases are described in further detail.

1BibTex: A literature handling system for the typesetting system LATEX

Student Catalogue for Reviewing And Managing Literature 23



Chapter 3. Application domain

Member

Supervisor

Moderator

Create new project

Add literature entry to 
project

Add review to 
literature entry

Add supervisor 
literature suggestion

Edit user information

Edit project 
information

Edit literature entry

Edit comment

Add comment

Remove user from 
project

Search for and 
view…

Remove user 
information

Remove user from 
system

Remove literature 
entry from system

Remove comment

Remove literature 
entry from project

Remove project

Create new literature 
entry

Create new user

Figure 3.1.: An overview of which actors can be involved in which use cases.

Create new user

The first thing a person needs to do when he wants to use the system is to establish
himself as a user (i.e. make a user account). When opening the system it first asks for
a username (and password). If the user is not represented in the system yet, the system
demands that he creates a new user. He enters his name followed by a departmen-
t/semester specification and his contact info (email address). Finally he has to enter the
desired username and password. This use case is illustrated in figure 3.2 on the next
page.

Objects involved Person

Create new project

As soon as a user has created a user account, he can create a new project. To do this the
user has to enter a project title and a project subject followed by information about which
department and semester the project is related to. Afterwards the system suggests the

24 SCRAML



3.1. USAGE

Figure 3.2.: Statechart diagram of the use case: Create new user.

Figure 3.3.: Statechart diagram of the use case: Create new project.

current date as the project start time, and offers the user with the following two options:
He can choose to accept the suggestion, or he can alter the date. Finally the user can
optionally choose to specify some project related keywords, and to add members and
supervisors before he creates the project. This use case is illustrated in figure 3.3.

Student Catalogue for Reviewing And Managing Literature 25



Chapter 3. Application domain

Objects involved Person, project, role, member, supervisor

Create new literature entry

Figure 3.4.: Statechart diagram of the use case: Create new literature entry.

A user of the system is always able to create a new literature entry. To begin this
process he has to specify whether he is adding an Internet source, or an offline source.
After this he has to specify the type of literature (i.e. book, article, journal etc.) followed
by the title and the name of the authors. If the user chooses to add an Internet source,
the system requests for an Internet address, and suggest the user to manually create
a backup of this Internet source. After this there is an amount of optional information
(depending on the literature type) he is able to enter in arbitrary order:

• Objective information: summary, ISBN and keywords.

• Subjective information: review and reference to a project.

The next step is the creation of the literature entry. This use case is illustrated in
figure 3.4.

Objects involved Person, literature, reference, review

Add literature reference to project

As a literature entry is created it is not necessarily affiliated with a project. To do this a
user first browses for the literature entry, and selects which project he wants to affiliate
it with. This creates a reference between the objects. He is only allowed to add references
to projects he is either the creator or member of. When adding a reference it is possible
to mark it as used in the project report.

Objects involved Member, literature, reference, project

26 SCRAML



3.1. USAGE

Add review to literature entry

To review a piece of literature, a user first has to locate the literature and choose to create
a review of it. A user can only review literature in connection with a project. When the
user has written his review he has the opportunity to rate the entry as well. A user can
also select a suggestion and review the suggested literature, turning the suggestion into
a review.

Objects involved Member, supervisor, literature, review, project, reference

Add comment

A user has the opportunity to add a written comment at any time. First the user browses
for the literature entry, review, suggestion or comment he wishes to comment on. Then
he enters his comment and submits it.

Objects involved Person, member, supervisor, literature, comment, reference

Add supervisor literature suggestion

When a user has the role of project supervisor he can suggest literature by choosing a
project followed by literature entry. If the literature entry does not exist in the system
the supervisor is enabled to add it.

Objects involved Supervisor, suggestion, literature, project

Edit user information

A user can alter his user account by choosing to manage his own account. By doing this
he can edit information such as e-mail address, password and department information.

Objects involved Person

Edit project information

The creator of a project is enabled to change project information like title, subject, key-
words, department, and semester. The creator does this by selecting the project and
informing the system that he wants to alter the project’s information.

Objects involved Member, project

Edit literature entry

A user can add, delete and alter information about literature entries that he has created
in the system by selecting the particular literature entry and informing the system that
he wants to edit details about it.

Objects involved Person, member, supervisor, literature

Student Catalogue for Reviewing And Managing Literature 27



Chapter 3. Application domain

Edit reference/review

A user can edit references or reviews. The creator of a review can make changes to the
review. Any user affiliated with the project can change information about a reference
and whether or not the referenced literature is used in the project.

Objects involved member, reference

Edit comment

When a user has added a comment he can choose to alter the content of it by clicking
the particular comment and then change the comment, but the user is not allowed to
remove the comment himself.

Objects involved Person, member, supervisor, comment

Remove user from system

The moderator can remove a user by selecting him and informing the system that the
user should be removed. When deleting a user the entries created by that particular
user still remains in the system, but the user cannot access to the system.

Objects involved Person

Remove literature entry from the system

Literature can be removed from the system by the moderator. The moderator locates the
literature in the system and then instructs the system to remove it.

Objects involved Person, literature, reference, comment, review, suggestion

Remove comment

Comments can be removed by the moderator, but when a comment is deleted all of the
subcomments will be removed as well. When the moderator finds a comment that he
wants to delete he can remove it by instructing the system to do it.

Objects involved Person, comment, literature

Remove project

When the moderator wants to remove a project he selects the project and then instructs
the system to remove it. To ensure that this action does not happen by an accident the
system requires that the moderator confirms the action.

Objects involved Project, role, reference, comment

Remove user from project

The project creator can remove a user from the project, by selecting the user and then
instructing the system to remove him from the project.

Objects involved Person, member, project

28 SCRAML



3.2. FUNCTIONS

Remove reference from project

References to literature used in a project can be removed by any member of a project.
This also deletes all comments to the reference.

Objects involved Reference, comment

Search for and view literature entry

All the users of the system are able to search for and view all literature in the system.
To do this a user instructs the system to start a search for literature, followed by infor-
mation about what he is searching for. The result is based on how it is rated in different
projects with similar topics and keywords.

Objects involved Person, literature

Search for and View project

Any user of the system can search for other projects. To do this the user instructs the
system to start a search for another project, and specifies what he is looking for.

Objects involved Person, project

Search for and View user

Any user can search the system for other users in order to view contact info and project
affiliation.

Objects involved Person

Search for and View review

Any user can search the system for and view reviews.

Objects involved Person, reference, review, comment, literature

3.2. Functions

In this section we will list all the functions of our future system. We will make a more
in-depth description of some of the functions assessed to be non-trivial.

3.2.1. Complete list of functions

The complete list of functions can be seen in table 3.1 on the following page. The func-
tions which are simple are considered trivial, i.g. DeleteComment simply removes an
object. The name of the function is sufficient to tell what the function does.

3.2.2. Specification of complex functions

We have categorized the functions that are more than simple to be non-trivial and there-
fore suitable for a more detailed description. The complexity is based on a simple as-
sessment of the function; if the function only is updating the database it is simple. Else
if the function is searching or doing updates several places in the database it is regarded
as more complex.

Student Catalogue for Reviewing And Managing Literature 29



Chapter 3. Application domain

Function Function Type Complexity
Search() Compute Very Complex
AssignPersonToProject() Update Medium
ExportBibliography() Compute Medium
ShowRelated() Compute Complex
DeleteProject() Update Medium
CreateProject() Update Simple
SubmitProject() Update Simple
CreateRole() Update Simple
DeleteRole() Update Simple
CreatePerson() Update Simple
DeletePerson() Update Simple
CreateReference() Update Simple
DeleteReference() Update Simple
ReviewLiterature() Update Simple
SuggestLiterature() Update Simple
DeleteLiterature() Update Simple
CommentLiterature() Update Simple
CommentReference() Update Simple
CommentComment() Update Simple
DeleteComment() Update Simple

Table 3.1.: List of functions

Specification of Search(): Search() is our main search function in the system. This is
the most complex function in the system primarily because of the ”sorted by relevance”
output.

Input:
A search query

Do:
Search through keywords for related projects and literature
Search through projects for title, subject and synopsis
Search through literature for author, title and summary

Output:
All found objects sorted by relevance to the search query.

Specification of AssignPersonToProject(): AssignPersonToProject() is one of the basic
functions in the system. The reason for the complexity being higher than simple is
that the function requires interaction between at least 3 different classes.

Input:
A person, a project and the person’s role in the project

Do:
Create a new role of the specified type and assign it to the person and to the project.

30 SCRAML



3.3. USER INTERFACE

Output:
None because it is an update function.

Specification of ExportBibliography(): ExportBibliography() is the function for exporting
the actual bibliography into various formats to be used in the report.

Input:
A project and a type of output (e.g. BibTeX)

Do:
For each reference in project check if reference is used. If true then add to bibliog-
raphy. Save bibliography and export to the given type of output.

Output:
A bibliography of the given type.

Specification of ShowRelated(): The ShowRelated() function is a searching function that
finds relations between projects and literature etc. based on keywords. It has a rather
high complexity.

Input:
A project or a piece of literature

Do:
Search through projects or literature and return related objects

Output:
Show related objects

Specification of DeleteProject(): DeleteProject() involves at least 3 different classes and
has therefore higher complexity than simple.

Input:
A project

Do:
Remove all references from project
Remove all roles
Remove project

Output:
None because it is an update function.

3.3. User interface

3.3.1. Usage aims

There are two properties in focus when designing a user interface, namely, usability
and user experience [5]. How important these goals are depends on the system. In
other words a system has to be tailormade in order for it to suit the application domain.
Table 3.2 on the next page displays a number of goals [5, p. 14 and 18] and the X’s show
how we have prioritized them in our article cataloguing system. The overall pattern in
table 3.2 is that usability is of higher priority compared to user experience.

Student Catalogue for Reviewing And Managing Literature 31



Chapter 3. Application domain

Crucial Important Less important Irrelevant
Usability Effectiveness X

Efficiency X
Safety X
Utility X
Learnability X
Memorability X

Experience Satisfying X
Enjoyable X
Fun X
Entertaining X
Helpful X
Motivating X
Aesthetically pleasing X
Creativity supportive X
Rewarding X
Emotionally fulfilling X

Table 3.2.: The usage aims of our system.

3.3.2. Conceptual model and forms of interaction

A conceptual model is an overall take on how the interaction between human and system
should take place. We distinguish between the following forms of interaction[13]: Menu,
Dialogue, Form-filling, Browsing, Manipulation and Instruction.

Forms of interaction in carrying out specific activities

In order to be able to determine the conceptual model of our system we have listed (see
table 3.3) a number of typical interaction activities that users would perform alongside
some possible ways these interaction activities could be realized in the system.

Activity Possible forms of interaction
Create new user Menu, Dialogue, Form-filling
Create new project Menu, Dialogue, Form-filling
Add literature entry Menu, Dialogue, Form-filling
Review/rate literature Menu, Browsing, Form-filling, Manipulation
Add comment to literature review Menu, Browsing, Form-filling
Add literature to project bibliography Menu, Browsing, Manipulation
View other bibliography Menu, Browsing

Table 3.3.: Some possible forms of interaction in carrying out specific activities.

From table 3.3 it is clear that all of the activities could be accessed from some menu
arrangement. Moreover, form-filling (which in essence can be regarded as a form of dia-
logue) is rather dominant in situations where the user inputs data such as project name,
keywords, literature entries and literature reviews. After this ”input phase” (which prob-
ably is ongoing during most of a project period) the dominant activity must be browsing,
since the users need to search for and eventually extract information from the system.

On this background and the fact that one of the key purposes of the system is to provide

32 SCRAML



3.3. USER INTERFACE

Use-case Form of interaction Activity
Create new user Dialogue Adding
Create new project Dialogue Adding
Create new literature entry Dialogue Adding
Add literature entry to project Dialogue Adding
Add review to literature entry Dialogue Adding
Add comment Browsing/Dialogue Adding
Add supervisor literature suggestion Dialogue Adding
Edit user information Manipulation Editing
Edit project information Manipulation Editing
Edit literature entry Manipulation Editing
Edit comment Manipulation Editing
Remove user from system Instruction Updating
Remove literature entry from system Instruction Updating
Remove comment Instruction Updating
Remove project Instruction Updating
Remove user from project Instruction Updating
Remove literature entry from project Instruction Updating
Search for and view literature entry Browsing Searching
Search for and view project Browsing Searching
Search for and view user Browsing Searching
Search for and view review Browsing Searching

Table 3.4.: List of forms of interactions in our system

a project group with an overview of it’s literature resources, we determine the main con-
ceptual model to be browsing with pronounced elements of dialogue. In some occasions
manipulation would be an obvious form of interaction as well. For instance the system
could enable the user to add a piece of literature to a project bibliography by applying a
drag-and-drop mouse action.

3.3.3. General interaction model

The list shown in table 3.4 depicts forms of interaction based on the use cases.
The general interaction model of our system is shown in figure 3.5 on the next page.

The purpose of the literature entry view is to show the selected literature entry with
its associated attributes, possible review, comments and project references. A solution
could be to include review and comment views directly into the literature entry view. At
this point in the development process it is our intention to make a designated moderator
view through which all system tasks can be carried out. This is why we have left out the
moderator specific use cases in the figure 3.5 on the following page.

3.3.4. Technical platform

As defined in the System Definition in section 1.2 on page 8, the system should be able to
run on a standard PC supporting the .NET framework and having a network connection.
The minimum system requirements for the .NET framework is a Windows 98 computer
[9].

Student Catalogue for Reviewing And Managing Literature 33



Chapter 3. Application domain

User View

Project View

Literature entry view

Main browser

Add new user

Edit user info

Add new project

Edit project info

Add new litterature entry

Add litterature to project

Add review to litterature entry

Add comment

Edit litterature entry

Edit review

Choose comments

Edit comment

Add supervisor suggestion

Choose user

Choose project

Choose litterature entry

Choose litterature entry & project

Figure 3.5.: General interaction model of our system.

34 SCRAML



3.3. USER INTERFACE

The reason for the requirement of the .NET Framework is that we are going to develop
the system in the C# programming language, which needs .NET framework to run.

Student Catalogue for Reviewing And Managing Literature 35



CHAPTER

4

Strategy for Future Development

This chapter contains information about the future development of our article system.

The next step in the process is to make a design document, which describes the system
design in detail. The design document is the link between the analysis and the actual
implementation of the system. There are several activities to be done in the design phase:

• Detailed design of the functionalities of the system

• The design of a more detailed class diagram

• Consider the design of the Graphical User Interface (GUI)

After making the design document we will implement our system, meaning the actual
programming of the system. There are also activities like testing the system with future
users and documentation of the system. General evaluation of the system is also part of
the implementation process.

4.1. Economy

We believe that it is possible to make an implementation of our article system within the
time we have available for this project. There should be no need to buy new hardware
for us to develop or run our application.

36 SCRAML



Part II

Design

This document describes the design of a literature management
system called SCRAML. It follows the guidelines for design set by
the Object Oriented Analysis and Design[6] method. First it defines
the criteria of the design, then the details of how the system should
be implemented.



CHAPTER

5

The Task

5.1. Purpose

The main purpose of the literature management system is to aid university student
project groups in managing their literature sources and to find relevant literature by
studying what literature is used in other similar projects. In addition to this the system
will help project supervisors by letting them view what literature a project group is using
in order to gain insight with the project, make suggestions and criticize a particular piece
of literature.

5.2. Corrections to the Analysis

Important corrections done in the analysis document since first project review:

• Mapped FACTOR criteria onto the system definition. See section 1.2 on page 8.

• Added description of the current situation. See section 1.3.1 on page 10.

• Moved description of the two rich pictures. See section 1.3.2 on page 12.

• Changed the class diagram of the problem domain. See section 2.1 on page 15.

• Changed the use case diagrams. See figure 3.1 on page 24, 3.2 on page 25, 3.3 on
page 25 and 3.4 on page 26.

The new version of the analysis document has been included.

5.3. Quality Goals

The quality of the system greatly influences how successful it will be. In order to ensure
this quality we have decided which criteria are most important as seen in table 5.1 on
the facing page. In the following is a short justification for the rating of each goal.

• Usable: This is an essential goal. The purpose of introducing a system is to make
a positive change in the way information of the problem domain is handled, and to
aid the actors of the application domain in carrying out their work tasks. In other
words, a system does not make any sense if it is not usable.

• Secure: Since our system is neither a system to control a high risk application
domain, nor a system to handle very sensitive data, security is not that significant.
However the login facility must be secure, in order to insure that the right users
have the correct rights within the system.

• Efficient: Efficiency is assessed to be very important, since users quickly loose
patience with inefficient systems.

38 SCRAML



5.3. QUALITY GOALS

Criteria Very important Important Less important Irrelevant
Usable X
Secure X

Efficient X
Correct X
Reliable X

Maintainable X
Testable X
Flexible X

Comprehensible X
Reusable X
Portable X

Interoperable X

Table 5.1.: Table of quality goals for system properties.

• Correct: It is important that the system is correct – i.e. behaves as expected,
because the system shall support the students projects. If the system is incorrect
there will be no reason to use the system at all.

• Reliable: An unreliable system is undesirable in most situations. Realiability is
closely connected to system robustness – the notion of the system not easily break-
ing down. Our aim is to make the system rather robust, and has accordingly
categorized reliability as important.

• Maintainable: This goal has low priority because the system is part of a study
project and thus is not expected to undergo further development and adjustments
after project report submission.

• Testable: We are expected to perform and document systematic tests of our system,
and for that reason testability is rated as important.

• Flexible: See ”Maintainable”.

• Comprehensible: Comprehensibility is a measure of the effort needed for other
developers than those who actually developed the system to gain an understanding
of the system and how it works. The system is – as stated above – part of a study
project, and for that reason comprehensibility is rated very important. This to
insure that the system is comprehensible both to ourselves and to the people who
are going to review our work.

• Reusable: See ”Maintainable”.

• Portable: Portability is less important in this case since we restrain our design
focus to the Windows platform. We are aware that other platforms such as Unix
and Linux are used at universities, but we assume that Windows is the most widely
used operating system.

• Interoperable: The system is stand alone and need not be linked to other systems.
For that reason interoperability is considered less important.

Student Catalogue for Reviewing And Managing Literature 39



CHAPTER

6

Technical Platform

In this chapter we describe the technical platform of the article cataloguing system. The
subjects covered are the equipment to run the software on, the software interfaces our
system needs to work and the design language applied.

6.1. Equipment

In overall terms the system consists of two parts – a system server and one or more PC
clients from which the users through network (LAN1 or Internet) can access the data
which will be stored on the system server. Most of the computations will be done on the
server side which also implies that the system requirements for the server will be rather
high and the client requirements rather low.

6.2. System Software

The client part of the system will be developed for computers running the operating
system Microsoft Windows. The only further requirement is that the client computer has
the .NET 2.0 framework installed. The minimum recommended system requirements for
the .NET framework [8] are a Pentium 90 MHz CPU and 96 MB RAM. The specifications
of modern PCs and laptops exceed these requirements by far.

In the light of the fact that we here at the Department of Computer Science have
Unix servers, we assume that the typical university servers are running Unix. However
due to the lack of developer experience, we focus on developing the server software for
the Windows platform. Only the client software and not the server software will contain
Windows Forms and it should for that reason be rather easy to adjust the server software
to the Unix platform. But since portability is rated less important (according to the table
of quality goals table 5.1 on the previous page), we will not spend resources trying to
achieve this.

6.3. System Interfaces

RMI2 will be used as the interface between the client and the article cataloging system
server. The RMI client invokes remote methods on the server and data is sent back to
the client from the server.

The systems network interface is interchangeable therefore any type of external in-
terface could be used on the server-side of the program. For example a web-service
interface or a HTTP server could be implemented.

1Local Area Network
2Remote Method Invocation

40 SCRAML



6.4. DESIGN LANGUAGE

6.4. Design Language

The applied design language is the subset of UML3 which is used in Object Oriented
Analysis & Design [6] to create design class diagrams to depict classes, their attributes,
methods and relations and sequence diagrams to illustrate how objects interact during
a certain period of time.

3Unified Modeling Language

Student Catalogue for Reviewing And Managing Literature 41



CHAPTER

7

Architecture

7.1. Design criteria and requirements crucial for the architecture

Table 7.1 elaborates on the quality goals1 rated ”Very important” of table 5.1 on page 39.
Furthermore the two important factors persistency and error handling are covered.

Factor Measures and
quality scenarios

Variability (current flexi-
bility / future evolution)

Impact of factor (and its
variability on stakeholders,
architecture and other fac-
tors)

Priority
for
success

Difficulty
or risk

Usability The system is in-
tended to be used
by many different
users at a uni-
versity

First time users
should be able to
gain an overall
understanding of
how the system
works within a
time frame of 10
minutes.

Current flexibility – If this
requirement is not accept-
ably maintained the sys-
tem will not be succesful.

High impact on the largescale
architecture and the detailed
UI-design. To ensure that
primary stakeholders utilize
the system it is important
with a high level of usability.
If the system fails to comply
with the usability demands
the primary stakeholders will
seek out alternate solutions.

H M

Efficiency It is crucial to
the success of the
system that the
users easily can
input or get the
information they
want.

Access to user
inquired informa-
tion should be
quick (including
user interface
navigation), and
relevant search
results should be
displayed within 3
seconds.

Current flexibility – So far
slow response is acceptable
because we are not using
a database system but a
XML-based server. – Fu-
ture flexibility – It is the in-
tention that the system in
the future will be based on
a database server instead
of XML files - This will en-
hance the efficiency of the
system.

High impact on the largescale
architecture, data access, al-
gorithms and UI design.

H H

Comprehensibility It is crucial that
it is possible to
get an overview
of the entire sys-
tem in order to
fix errors, and
to help other de-
velopers under-
standing the sys-
tem.

The source code
should be well doc-
umented and com-
mented. The use
of well-known de-
sign patterns can
help increase com-
prehensibility.

Current flexibility – We
do not allow any flexibil-
ity in this step because
there are different develop-
ers working with the sys-
tem that needs to under-
stand how specific func-
tionality works.

High impact on the largescale
and component architecture.

H H

Persistency Persistency is es-
sential. The sys-
tem would not
make any sense
without the op-
portunity to add,
search, edit and
retrieve data.

It should be pos-
sible to store data
entries in the sys-
tem, and search for
and edit these en-
tries at a later sys-
tem run.

Current flexibility – Crucial
for the success of the sys-
tem hence no flexibility.

Very high impact on the suc-
cess of the system, and is for
that reason a crucial part of
the architectural design.

H H

Error handling The system
must be robust
and forgiving
concerning the
most common
errors.

Error handling
should be imple-
mented and error
messages should
be kind, informa-
tive and provide
suggestions on
how to solve the
problem.

Current flexibility – Most
errors must be well han-
dled – especially errors
caused by the user. –
Future flexibility – Error-
handling that is not yet im-
plemented should be easy
to implement.

Errors can arise from both
internal system implications
and the user interaction. The
latter is an important aspect
in order to honor the de-
mands given in the table de-
scribing the usage aims for
the user experience (satisfy-
ing, rewarding and helpful).

H M

Table 7.1.: Factors crucial for the architecture (H = High, M = Medium and L = Low).

All the factors in the table are based on things that we believe is most important in
order to ensure that the system will be successful. This is why we rated the priority for

1In this context the three goals are considered ”factors” that influence the architecture.

42 SCRAML



7.2. GENERIC DESIGN DECISIONS

success high for all the factors in the table.
The difficulty or risk ratings are based on how complex an eventual change to the

system software would be if the specific criteria have not been successfully filled.

7.2. Generic design decisions

The following is a description of the generic design decisions. In other words our solu-
tions to recurring problems.

Architecture patterns

We apply a Closed-Strict layered architecture pattern which means that a given layer
only can use operations from the layer immediately below. Furthermore we follow a
Client-Server pattern where most of the work is carried out on the server-side, and only
the GUI component is handled on the client-side.

The GUI

The GUI is designed to fit in the windows environment because we are using Visual
Studio 2005 we will not put very much effort in this. The designer tools in this IDE do
most of the design for us, so in most of the program we will use the standard controls
provided.

• Affordance: It has to be as clear as possible how to interact with the program.

• Mapping: The mapping between the controls in the GUI and the objects they affect
has to be as direct as possible.

• Consistency: There are two types of consistency: Internal in the system and Exter-
nal related to other systems. Internal refers to for instance consistent use of terms
throughout the system, while External refers to resemblance with the way existing
systems are dealing with similar issues.

• Feedback: When the users performs an action the system has to respond explicitly
to inform the user that it is working on his request. This is done for instance by
changing the cursor icon to an hour-glass when the request takes a little time to
carry out.

Persistency handling

Data about users, projects, literature entries, etc. is stored on the server side as files.
The persistent layer is the lowest layer in the component architecture diagram as il-
lustrated in figure 7.3 on page 46. On every program run the entire data collection is
loaded into the model component for efficient, random access – for instance for searching
purposes. When the editing is finished the data collection is saved onto the persistent
layer.

Documentation style

Standard Visual Studio 2005 XML documentation style is applied, with additional com-
ments describing namespaces.

Student Catalogue for Reviewing And Managing Literature 43



Chapter 7. Architecture

UsabilityInformatics User Interface Windows Forms.NET Programming

Figure 7.1.: An example of a tag cloud

Coding style

Standard Visual Studio 2005 coding style (for instance the use of curly brackets and
indentation) is applied.

Naming conventions

All names used in the system design must be descriptive of what they represent. Fur-
thermore the following rules apply:

• Variables: Must be written in lowercase. In case of concatenated words the first
letter in every word must be in uppercase e.g. ”dateOfBirth”.

• Instances of classes: Must be written in lowercase.

• Methods: Is capitalized.

• Properties: Named the same as the corresponding variable if they exist, except that
it is capitalized.

• Classes: Is capitalized.

Broad folksonomy

The first of the following pictures illustrate how selecting terms for queries for projects
and literature should be visualized in our system. The second demonstrates how to de-
fine those terms when viewing the item’s properties. The system presented here is based
around the concept of broad folksonomies[4], a term first coined by Thomas Vander
Wal[14] to describe a method for social bookmarking. See also Appendix D on page 120.

An alternative way to select search terms in the system (as opposed to typing them
out manually) is the tag cloud. This should be a part of the final system as illustrated on
Figure 7.1. The tag cloud illustrates the frequency of a keyword in the system by varying
the text size. In this example Informatics is the most used keyword.

The sketch in figure 7.2 on the facing page illustrates how the relevance of a keyword
is represented for the user when viewing a piece of information, such as a project or a
piece of literature. The keywords of each item must be ordered by relevance, as shown
by way of a progressbar. The small plus and minus labels beside each item’s text and
progress bar indicate buttons where the top items are keywords the user has already
assigned to this item. The lower items (with the plus) indicate keywords that other users
have assigned to the item.

Clicking the minus and plus buttons will show the user’s disagreement or agreement
with the keyword. If he clicks the minus button will remove the user’s association of
the keyword with the item (that is: the user untags the item). If on the other hand he
clicks the plus button outside one of the keywords he has not yet assigned himself, he
assigns this keyword with the piece of information (that is: he tags the item). Thus
respectively decreasing or increasing the keyword’s relevance in the system to this item
of information.

44 SCRAML



7.3. COMPONENT ARCHITECTURE

Usability

User interface

Other Peoples Tags:

My Tags:

Create New Tag

Show All Tags

Informatics

+

+

Windows Forms

.NET

Programming
+

Figure 7.2.: An example of the keyword list view

7.3. Component Architecture

The diagram in figure 7.3 on the next page depicts the overall layered client-server com-
ponent architecture of our system. The top layer consists of the clients 1 to n, where a
client is situated on a users PC/laptop. Each client is an aggregation of a GUI component
and a Client-API2 which provides connectivity to a server component. The architecture
is according to section 7.2 on page 43 Closed-Strict. The Client-API and Server-API are
transparent. Further description is detailed in figure 8.1 on page 49. The system im-
plements a 6-layered architecture instead of the OOAD proposed 3-layered architecture
(Model, Functionality and Interface). In order from top to bottom the layers are:

GUI The user-interface presented to a user of the system

Client-API The client side of the network architecture.

Server-API Server side of the network architecture.

Accesshandler Handles authentication of users and their permissions in the system.

Catalogue Contains the model of the system and all functions to modify that model.

Persistent Data Handles saving the model to a persistent data source (eg. harddrive).

Using the 6-layered architecture allows for interchangeable implementations of each
layer. The network architecture (Server-API and Client-API) is completely interchange-
able, allowing the use of several different protocols at the same time. This is achieved
by ensuring that the interface provided to the GUI from Client-API is identical to the
interface provided to Server-API from the Accesshandler. Persistent Data is also com-
pletely interchangeable, which allows developers to use custom implementations, saving
the model data to a variety of persistent data types (e.g. different filetypes like XML and
proprietary binary files or saving data directly via network to a server).

2Application Program Interface.

Student Catalogue for Reviewing And Managing Literature 45



Chapter 7. Architecture

<<Component>>
Server 

<<Component>>
Server API 

Server RMI Webservice HTTP 
Server

<<Component>>
Access Handlers 

AccessHan
dler for 
client 1

AccessHan
dler for 
client 2

AccessHan
dler for 
client n

<<Component>>
Catalogue 

Model

<<Component>>
Persistent Data 

XML ADO.NET Binary Files

GUI

Client RMI Web 
Service

HTTP 
Browser

<<Component>>
Client API 

Client RMI Web 
Service

HTTP 
Browser

<<Component>>
Client API 

GUI

Client RMI Web 
Service

HTTP 
Browser

<<Component>>
Client API 

<<Component>>
Client 1 

<<Component>>
Client 2 <<Component>>

Client n

GUI

<<Component>><<Component>><<Component>><<Component>> <<Component>> <<Component>>

<<Component>><<Component>>

<<Component>><<Component>><<Component>>

<<Component>> <<Component>> <<Component>>

<<Component>><<Component>><<Component>>

<<Component>>

<<Component>> <<Component>> <<Component>>

<<Component>>

Figure 7.3.: Diagram depicting the component architecture of the system.

46 SCRAML



7.4. EXEMPLARY DESIGN

7.4. Exemplary Design

In the following we describe some use case scenarios by using sequence diagrams. This
is done to show how some different use cases will be handled by the system. The method
invocation arguments are referred to as ”arg”. We have chosen the use-cases, that were
realistic to implement at time of writing. Furthermore these use cases illustrates impor-
tant parts of the system. We consider the ”create project” -diagram as a nontrivial part
of the system, and ”register user” and ”login” are considered trivial.

7.4.1. Register user sequence diagram

:ShowDialog():Click"NewUser" CreateNewUserForm:CreateNewUserFormloginController:Accesshandlercatalogue:Catalogue:Persondatabase:PersistentDataloginForm:Login :RegisterUser(user:string,password:string,name:string,department:string):ErrorMessages
:IfusernametakenreturnErrorMessage :HashedValue(password:string):string:SaveData(data:Data)

:GetUser(user:string):Person
:User :Register(user:string,name:string,password:string,department:string):ErrorMessages

Figure 7.4.: Create new user sequence diagram

Figure 7.4 depicts the states in the process of creating a new user. When the user has
entered the required fields in the instantiation of CreateNewUserForm the form invokes
the loginController instantiation of AccessHandler with the register(arg) statement. The
Accesshandler protects the system by only allowing the new user to make the call to
the RegisterUser(arg) in the Catalogue instantiation. The Catalogue first checks if the
username already has been taken by using the GetUser(arg) statement. If this is the case
the Catalogue returns an ErrorMessage to the CreateNewUserForm. If the user does
not already exist the Catalogue accesses the Person class’ HashedValue(arg) operation
in order to generate a hash of the user’s password. The hash is used as encryption.
Finally the Catalogue makes a call to SaveData(arg) which is a part of the PersistentData
instantiation. This will save the new user information in the persistent data source and
hereby finished the user creation.

7.4.2. Login sequence diagram

Figure 7.5 on the next page depicts the states in the login process. When the user
has entered the required information in the instantiation of the Login (form) the form
calls the Login(arg) statement in the loginController instantiation of the Accesshandler
class. This forces the loginController to make a call for the GetUser(arg) statement in
the Catalogue instantiation. The GetUser(arg) returns the result to the loginController.
If the user does not exist the loginController returns an error to the Login (form) and
terminates. If the user exists the loginController invokes the HashedValue(arg) function
of the Person class in order to check if the entered password is correct. HashedValue(arg)
returns the result of the password check to the loginController. If the password is invalid
the loginController returns an error message to the Login (form) and terminates. If the
password was correct the loginController returns a message to the Login (form) informing

Student Catalogue for Reviewing And Managing Literature 47



Chapter 7. Architecture

Login:Login loginController:Accesshandlercatalogue:Catalogue:Personmw:MainWindow:User :Login(user:string,password:string):ErrorMessagesp:GetUser(user:string):Person:if(p==null)ErrorMessages.LoginFailedph:HashedValue(password:string):string:if(p!=ph)returnErrorMessages.LoginFailed
:if(user==loggedin)showmw

:Click"Login"

Figure 7.5.: Login sequence diagram

that the login was successful. Finally the Login (form) invokes an instantiation of the
MainWindow.

7.4.3. Create project sequence diagram

mw:MainWindowaccessHandler:Accesshandlercatalogue:Cataloguep:Projectdata:Datadatabase:PersistentData:User :CreateProject(creator:string,start:DateTime,subject:string,title:string,department:string,outid:int):ErrorMessages:CreateProject(creator:string,start:DateTime,subject:string,title:string,department:string,outid:int):ErrorMessages:AddPerson(p:Person,role:RoleType):projectTable.Add(p):SaveData(data:Data)

:Clicks"Newproject"

Figure 7.6.: Create new project sequence diagram

Figure 7.6 depicts the states in the create new project process. When the user has en-
tered the required information about the project that he wants to add in the MainWindow
instantiation, it will make a call to the CreateProject(arg) function in the AccessHandler
instantiation. The AccessHandler will then redirect the request to the CreateProject(arg)
function in the Catalogue instantiation. The Catalogue instantiation then makes a call
to the AddPerson(arg) statement in the Project instantiation in order to connect the user
with the project being created. When this is done the Catalogue instantiation invokes the
projectTable.Add function in the Data instantiation. This function will add the project
ind the list of projects in the system. When this is done the Catalogue makes a call for the
SaveData(arg) statement in the database instantiation of the PersistenData class. This
function will save the added data to the persistent data source. Finally the MainWindow
is told that the project creation was successful.

48 SCRAML



CHAPTER

8

Components

8.1. General Overview

The diagram 7.3 on page 46 depicts the general architecture of the system. A fully
detailed class diagram of the system is shown in figure 8.1 on page 54. The following
section details the system further.

8.2. Descriptions of Components

The component descriptions consists of a general description of the component structure
and if relevant a description of the involved classes. This section details the classes’
purposes and responsibilities.

8.2.1. PersistentData Component

The PersistentData component (in the center of figure 8.1 on page 54) handles saving the
system data to a persistent source, for example on a harddisk. An abstract class named
after the component PersistentData makes it possible for developers to use any type
of persistent storage. As an example, an XMLHandler class was implemented, which
provides load and save functions for the models data.

Data is encapsuled in a Data object which contains 3 dictionaries. One for people
(Person class), one for Literature and one for Projects. A Data class is passed to the Save
function and the Load function returns a new instance of the Data class.

If a database backend was used, it would have been advantageous for the Persistent-
Data class to provide functions for saving single records of system objects, but such an
implementation was not prioritized.

PersistentData Interface

PersistentData is an interface that provides the functions needed to save and load the
system model. It allows for very low coupling between the actual implementation of the
PersistentData and the Catalogue object.

XMLHandler Class

Loads and saves a data object to XML-files. The XMLHandler class inherits and imple-
ments load and save functions from the PersistentData interface.

BinaryData Class

Because the PersistentData interface allows for different implementations, changing the
way the program saves data is very simple. Implementing a BinaryData class would
allow for saving the program data into proprietary binary files, potentially faster that the
XMLHandler approach.

Student Catalogue for Reviewing And Managing Literature 49



Chapter 8. Components

ADO.NET Class

Another possibility is using the .NET Framework’s data abstraction model ADO.NET to
save and load data. Implementing an ADO.NET handler class allows for easy communi-
cation with a database or other ADO.NET compatible persistent data implementations.

8.2.2. Catalogue Component

The Catalogue component contains the actual model of the system. At runtime the
Catalogue component loads all available data from the PersistentData component and
keeps the data in a data structure consisting of dictionaries.

Catalogue Class

See the uppermost centre of figure 8.1 on page 54. This class is the core of the system. It
has responsibility over the model. It contains all Projects, Literature, People, Reference,
Review, Suggestion, Role and Comment objects. Catalogue has to ensure that the model
is consistent, therefore all changes to the model are done through this class. This class
also contains all tags and their relations to objects in the model. Catalogue also has
the responsibility of saving the model to via the persistent data component. This class
also contains synchronization functions for the multiuser environment. This class is a
facade controller of the model and thus is very extensive, which unfortunately lowers its
cohesion. It is also the Creator of all objects in the model as well as an expert on the
information in the model.

The Catalogue object is singular, only one exists for the server. It contains a reference
to an object that implements PersistantData and a reference to the Data that it has
loaded from the persistent data.

Search Function This function takes one argument, a search string, and returns a list
of literature and projects. It returns a list of ResultInfo that contains an ID from the
UniquelyIdentifiable class, a piece of text that describes a piece of literature or project
and a type to distinguish between project and literature. The returned list is sorted after
how the match was done, if the search string matches the title of a result, then it goes
in the front of the list, if it matches a tag then all related results are put in the center of
the list, if the match was made on the synopsis, summary or title then the results are
put in the end of the list.

1 public List<ResultInfo> Search(string query)
2 {
3 query = query.ToLower().Trim();
4 List<ResultInfo> infos = new List<ResultInfo>(),
5 titleMatches = new List<ResultInfo>();
6 Dictionary<int, ResultInfo> addedInfos = new Dictionary<int, ResultInfo>();
7 if (query.Length < 4)
8 return infos;
9

10 foreach (Project p in data.ProjectTable.Values)
11 {
12 if (p.Title.ToLower().Contains(query))
13 {
14 ResultInfo ri = new ResultInfo(p.ID.ToString(), p.Title, typeof(Project));
15 titleMatches.Add(ri);
16 addedInfos.Add(p.ID, ri);
17 continue;
18 }
19 if (p.Subject.ToLower().Contains(query) || p.Synopsis.ToLower().Contains(query))
20 {
21 ResultInfo ri = new ResultInfo(p.ID.ToString(), p.Title, typeof(Project));
22 infos.Add(ri);
23 addedInfos.Add(p.ID, ri);
24 }
25 }
26
27 foreach (Literature literature in data.LiteratureTable.Values)
28 {

50 SCRAML



8.2. DESCRIPTIONS OF COMPONENTS

29 if (literature.Title.ToLower().Contains(query))
30 {
31 ResultInfo ri = new ResultInfo(literature.ID.ToString(), literature.Title, typeof(Literature));
32 titleMatches.Add(ri);
33 addedInfos.Add(literature.ID, ri);
34 continue;
35 }
36 if (literature.Author.ToLower().Contains(query) || literature.Summary.ToLower().Contains(query))
37 {
38 ResultInfo ri = new ResultInfo(literature.ID.ToString(), literature.Title, typeof(Literature));
39 infos.Add(ri);
40 addedInfos.Add(literature.ID, ri);
41 }
42 }
43
44 DataRow[] row = data.Tags.Select("Tag LIKE ’" + query.Replace("’", "’’") + "’", "Tag");
45 foreach (DataRow r in row)
46 {
47 int id = (int)r["ID"];
48 if (addedInfos.ContainsKey(id))
49 continue;
50
51 if (data.ProjectTable.ContainsKey(id))
52 {
53 ResultInfo ri = new ResultInfo(id.ToString(), data.ProjectTable[id].Title, typeof(Project));
54 addedInfos.Add(id, ri);
55 infos.Insert(0, ri);
56 }
57 if (data.LiteratureTable.ContainsKey(id))
58 {
59 ResultInfo ri = new ResultInfo(id.ToString(), data.LiteratureTable[id].Title, typeof(Literature));
60 addedInfos.Add(id, ri);
61 infos.Insert(0, ri);
62 }
63 }
64 titleMatches.AddRange(infos);
65 return titleMatches;
66 }

8.2.3. AccessHandler Component

AccessHandler provides login function and ensures that a logged-in user only has the
privileges he is entitled to. It is the link between the Server-API and the Catalogue. It
mirrors most of the Catalogues public functions but adds additional user specific checks
and extra functions. A new AccessHandler class instance is created for each logged-in
user.

AccessHandler Interface

The AccessHandler interface describes all an AccessHandler’s functions. An AccessHan-
dler mirrors most of the functions on the Catalogue component but adds additional user
authentication and permission checks. A Client creates a proxy object that implements
the AccessHandler interface, when methods are called on the proxy object, the messages
are marshalled and sent over the network by the Client-API component. The Server-API
Component receives the marshalled method calls, demarshalls them and calls the users
AccessHandler object on the server. The AccessHandler defines a Controller of the Cat-
alogue.

8.2.4. Server-API Component

The Server-API is the server program’s external interface. It provides access to an Ac-
cessHandler object. It is implemented as an abstract class called Server-API. By ab-
stracting the communication between server and client, we open up for the possibility of
implementing different solutions. Possible solutions for the Server-API are Web-Service,
HTTP-Server and Remote Method Invocation(RMI), the last of which we intend to use.
The Server-API lowers the coupling between the AccessHandler and the implementation
of the server-side network code.

Student Catalogue for Reviewing And Managing Literature 51



Chapter 8. Components

RMI-Server Class

The RMI-Server class inherits the Server-API abstract class. It is a Remote Method
Invocation implementation, and is implemented in C# using .NET’s Remoting library.
The RMI-Server initializes the Remoting interface by opening a local port for connection
and registering an RMI-ServerObject.

RMI-ServerObject Class

Is a remote object. This object inherits MarshalAsObjRef to enable its publication on
an RMI-Server. When initializing the RMI-Server this object type is registered as a Sin-
gleCall remote object, meaning that a new instance is created for every user. The RMI-
ServerObject Class contains only one function, a way to create a new AccessHandler for
the user connecting and passing the client a reference to this new AccessHandler. This
class is used in conjunction with the .NET Remoting library. An instance of this object is
volatile in .NET remoting and thus allowing it to serve non-volatile AccessHandler remote
objects, resulting in less disconnection errors and less error handling code.

8.2.5. Client-API Component

Client-API provides transparency for the client implementation. It creates instances of
proxy objects that implements the AccessHandler interface. Using a proxy object allows
for abstraction and very low coupling between the GUI and the Client-API.

Client-API Interface

Provides the necessary functions to require a proxy object of the server AccessHandler.

RMI-Client class

Connects to an RMI-Server. It has a function to get a reference to or proxy of the Ac-
cessHandler. It implements the Client-API interface.

8.2.6. The Graphical User Interface Component

The GUI component consists of a collection of different windows forms. They are imple-
mented using C# and .NET’s System.Windows.Forms library. They provide the interface
for working with the AccessHandler. They implement all functions of the AccessHan-
dler in different windows and dialogs as described in the following Interaction Spaces
section.

8.3. Interaction spaces

This section describes those interaction-elements, that is not contained in another win-
dow.

8.3.1. Create user dialogue

In the window on figure 8.2 on page 55 the forms of interaction used are conversation
and browsing. In this window the user can enter various data about themselves. In the
listbox the user can choose which semester he is following. The button ”Create User”

52 SCRAML



8.3. INTERACTION SPACES

saves the current data, and the ”Cancel” -button quits the current window and presents
the Login window.

8.3.2. The Literature entry window

In the window on figure 8.3 on page 55 the only form of interaction used is conversation.
In this window it is possible for the user to enter the relevant information about their
literature. The buttons in the bottom of the window, allows the user to navigate to
relevant parts of the program. When the user clicks ”Review and comments” the user
will be able to access these, and the user will be presented with a new window. The next
button in the window is ”Add this entry to project bibliography” and when this button
is clicked, the current literature entry can be associated with a relevant project. When
the ”OK” -button is clicked the literature entry is just added to the system as a piece of
literature, but not associated with any project. The ”Cancel”-button closes the current
window, and presents the user with the main-window.

8.3.3. Presentation model

The presentation model as seen on figure 8.4 on page 56 is an abstract version of our
user interface. The purpose of the presentation model is to show how our interaction
spaces are structured and linked together, which helps us design the GUI. Most of the
interaction spaces in the presentation model have input, output and action elements. A
input can for instance be text from a text box. Output is something displayed for the
user, for instance a list of literature. Actions are elements the user can interact with, for
instance if the user presses a button.

Student Catalogue for Reviewing And Managing Literature 53



Chapter 8. Components

Figure 8.1.: Detailed class diagram for our system

54 SCRAML



8.3. INTERACTION SPACES

Figure 8.2.: ”Create User Window”

Figure 8.3.: ”Literature entry window”

Student Catalogue for Reviewing And Managing Literature 55



Chapter 8. Components

< Navigate >
< Navigate >

<<Output elements>>
Comments
<<Input elements>>
Project
Litterature
<<Actions>>
View user

<<Output elements>>
Project
Litterature
User
<<Input elements>>
Search word
<<Actions>>
View project
View litteratur
View User

<<Output elements>>
New project
<<Input elements>>
Project name
Other project info
<<Actions>>
Create project

<<Output elements>>
<<Input elements>>
Name
Password
Other user info
<<Actions>>
Edit user

<<Output elements>>
<<Input elements>>
User name
Password
<<Actions>>
Login

<<Output elements>>
Comment
Litturatur
Sources
<<Input elements>>
<<Actions>>
Project info
Add tag
View user
Edit project

<<Output elements>>
New user
<<Input elements>>
Name
Password
Other user info
<<Actions >>
Add user
Cancel

<<Output elements>>
<<Input elements>>
<<Actions>>
Add comment
Edit litterature
Add tag

<<Output elements>>
<<Input elements>>
Keyword
<<Actions>>
Add tag
View tags

<<Output elements>>
<<Input elements>>
<<Action>>
View project
Help
Create project
View litterature
Search
Tags

<<Output elements>>
New comment
<<Input elements>>
Name
Date
Text
Project
Litterature
<<Actions>>
Create comment

<<Output elements>>
Litturatur
<<Input elements>>
Title
Author
Other info
<<Actions>>
Create Litterature

< Navigate >

< Navigate >

<<interface>>
Main window

< Navigate >

<<Interaction space>>
Search

<<Interaction space>>
Project

< Contain >

<<Interaction space>>
Create user

< Navigate >

<<Interaction space>>
Login

< Contain >

< Navigate >

< Navigate >

< Navigate >

< Navigate >

<<Interaction space>>
Tags

< Contain >

< Contain >

<<Interaction space>>
Litterature

< Contain >

< Navigate >

< Contain >

< Contain >

<<Interaction space>>
Comment

<<Interaction space>>
User<<Interaction space>>

Add project

<<Interaction space>>
Add litterature <Navigate>

< Navigate >

< Contain>

<<Interaction space>>
Add comment

<Navigate>

< Contain >

< C
ontain >

Figure 8.4.: Presentation model. Contain means that the interaction spaces is included
in in the interaction spaces it is contained in. Navigate means that it is
possible to navigate from one of the interaction spaces to another.

56 SCRAML



CHAPTER

9

Programming

9.1. Programming

This section shows an example of how to implement parts of the system. It serves to
prove that implementing the system is feasible. We describe the use case Create new
user and the interaction from the GUI down to the Catalogue as shown on figure 7.4
on page 47. We include some selected pieces of code. This example was chosen to
highlight an update function, because a large portion of the program consists of these.
This implementation uses an RMI communication model and XML for saving data.

9.1.1. Program execution

On server start, an instance of XmlHandler and Catalogue is made and the RMIServer is
started.

Main function of the Server class
1 public static void Main(string args[])
2 {
3 // XmlHandler is our implementation of the Persistent Data component
4 PersistentData pd = new XmlHandler();
5
6 // Catalogue is instanciated
7 Catalogue catalogue = new Catalogue(pd);
8
9 // RMIServer is started, starts listening on port 8080.

10 RMIServer rmiServer = new RMIServer(catalogue);
11 rmiServer.Listen(8080);
12
13 // Wait for someone to close the serv5er again by pressing a button
14 Console.Read();
15
16 // Gracefully disconnect clients
17 rmiServer.Close();
18 }

A client starts up by attempting contact to an RMI-Server. The address and port of
this server can be loaded from a configuration file for this implementation, alternatively
another dialog could be used to input server information. After connection is made the
login window is shown.

Main function of the Client class
1 public static void Main(string args[])
2 {
3 try {
4 // Start Client
5 RMIConfiguration conf = LoadConfig();
6 RMIClient client = new RMIClient(conf);
7 } catch(IOException e) {
8 MessageBox.Show("‘Could not load File"’);
9 return;

10 } catch(RemotingException e) {
11 MessageBox.Show("‘Could not Connect"’);
12 return;
13 }
14
15 // Get accesshandler proxy
16 AccessHandler accessHandlerProxy = client.GetAccessHandler();
17
18 // Start Login Window
19 Login login = new Login(accessHandlerProxy);
20
21 Application.Run(login);
22 }

Student Catalogue for Reviewing And Managing Literature 57



Chapter 9. Programming

9.1.2. GUI: CreateNewUserForm

This form is the beginning, it is opened from the login window and is passed a reference
to a proxy to an AccessHandler.

The CreateNewUserForm class
1 public partial class CreateNewUserForm : Form
2 {
3 // Reference to the accessHandler
4 private AccessHandler accessHandler;
5
6 // Constructor
7 public CreateNewUserForm(AccessHandler a)
8 {
9 // Set the AccessHandler

10 this.accessHandler = a;
11
12 // Initialize the form
13 InitializeComponent();
14 } // End constructor
15
16 // The function for a "CreateNewUser" button on the GUI
17 private void CreateUserButton(object sender, EventArgs e)
18 {
19 // Make some strings and retrieve data from textboxes on the GUI
20 string name = nameTextBox.Text;
21 string email = emailTextBox.Text;
22 string department = departmentTextBox.Text;
23 string username = usernameTextBox.Text;
24 string password = passwordTextBox.Text;
25 string confirm = confirmTextBox.Text; // Confirm password again
26
27 // This function checks if the confirmed password matches the password.
28 if (password != confirm)
29 {
30 MessageBox.Show("Passwords do not match!", "Try again!", MessageBoxButtons.OK, MessageBoxIcon.Error);
31 return;
32 }
33
34 ... // check more textboxes
35
36 // Finally call the "register" method on the accessHandler object with the input from the GUI.
37 // Return an error if the username if already taken.
38 ErrorMessages lm = accessHandler.Register(username, password, name, department);
39 if (lm != ErrorMessages.OK)
40 {
41 MessageBox.Show("Username already Exists!", "Try again!", MessageBoxButtons.OK, MessageBoxIcon.Error);
42 return;
43 }
44
45 // Tell GUI the user was created
46 MessageBox.Show("User was created!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Information);
47 this.Close();
48
49 } // End function
50
51 } // End class

9.1.3. The AccessHandler

When GetAccessHandler is called on an RMIClient instance it contacts RMIServer and
gets a remote reference to a new AccessHandler object. RMIClient then creates the proxy
object and returns that to the GUI. On the server, the RMIServer uses its reference to
Catalogue to create the AccessHandler. The following is an excerpt from the AccessHan-
dler class.

The AccessHandler class
1 // The different types of messages that can be returned as a result of a function call on the accesshandler.
2 public enum Messages
3 {
4 OK,
5 LoginFailed,
6 UserExists,
7 OperationNotAllowed,
8 Fail
9 }

10
11 public class AccessHandler
12 {
13 // When a user logs in a reference to his Person object is stored here.
14 // It is used to check whether or not he is allowed to perform the functions that are called.
15 private Person user = null;
16
17 // A private reference to the catalogue

58 SCRAML



9.1. PROGRAMMING

18 private Catalogue catalogue;
19
20 // Constructor, called by the RMIServer object.
21 public AccessHandler(Catalogue catalogue)
22 {
23 this.catalogue = catalogue;
24 }
25
26 // The register function which was called with input from the GUI. It returns an message which
27 // could be "OK", "UserExists", etc.
28 // Because any client, logged in or not, can create a new user/person, no check is performed
29 public Messages Register(string user, string password, string name, string department)
30 {
31 return catalogue.RegisterUser(user, password, name, department);
32 }
33
34
35 // This is included to highlight the AccessHandlers main function.
36 // A check is made whether or not the current logged in user is allowed to delete a given project
37 public Messages DeleteProject(int id)
38 {
39 // if user variable is null, the user is not logged in.
40 if (user == null)
41 return Messages.OperationNotAllowed;
42
43 // Get the project from catalogue.
44 Project p = catalogue.GetProject(id);
45
46 // find this users role in the project.
47 Role r = p.GetPerson(user.UserName);
48
49 // A user is only allowed to delete the project if he is the creator of the project or a moderator.
50 if (user.Moderator || (r != null && r.Person == user && r.Type == RoleType.Creator))
51 {
52 return catalogue.DeleteProject(id);
53 }
54 else
55 {
56 return Messages.OperationNotAllowed;
57 }
58 }
59
60 //... continued

9.1.4. Catalogue

Catalogue receives calls from the accesshandler, updates and saves the model.

The Catalogue class
1 public class Catalogue
2 {
3 // Declare the PersistentData object used for storing data
4 private PersistantData database;
5
6 // Data Object contains the model
7 private Data data;
8
9 // Constructor

10 public Catalogue(PersistantData database)
11 {
12 this.database = database;
13 // Load data into memory
14 data = database.LoadData();
15 // Load users into the table
16 foreach (Person p in this.data.PersonTable.Values)
17 {
18 users.Add(p.UserName, p);
19 }
20 }
21
22 // The RegisterUser function
23 public Messages RegisterUser(string user, string password, string name, string department )
24 {
25 // Check if person exist
26
27 if (data.PersonTable.ContainsKey(user))
28 return Messages.UserExists;
29
30 // Create the new user. The "HashedValue" function hashes the users password into some tokens
31 // incomprehensible to humans.
32 p = new Person(user, Person.HashedValue(password), name, department);
33 data.PersonTable.Add(p.UserName, p);
34
35 // Add the new user to the table
36 users.Add(user, p);
37
38 // Save the data
39 database.SaveData(data);
40
41 return Messages.OK;
42 }

Student Catalogue for Reviewing And Managing Literature 59



Chapter 9. Programming

43
44 //... Continued ...

9.1.5. PersistentData: XMLHandler

This implementation is a test. It iterates all content of the Data object and writes it to a
couple of XML- files. It makes extensive use of the XmlReader and XmlWriter classes in
C#. The reasons for not using the XMLSerializer, is that it requires changing the model
to accommodate the XmlSerializer by marking up all model classes with attributes that
describe how they should be serialized in XML. To allow for lower cohesion a simpler
approach is applied, examplified in the following code:

The XmlHandler class
1 public class XmlHandler : PersistantData
2 {
3 XmlWriterSettings writerSettings;
4
5 // Constructor
6 public XmlHandler()
7 {
8 writerSettings = new XmlWriterSettings();
9 writerSettings.Indent = true;

10 writerSettings.IndentChars = (" ");
11 }
12
13 // Loads all data
14 public override Data LoadData()
15 {
16 Dictionary<int, Project> projectTable = LoadProjects();
17 Dictionary<int, Literature> literatureTable = LoadLiterature();
18 Dictionary<string, Person> personTable = LoadPersons();
19 DataTable tags = new DataTable();
20 tags.Columns.Add("Tag", typeof(string));
21 tags.Columns.Add("ID", typeof(int));
22 tags.Columns.Add("UserName", typeof(string));
23 tags.PrimaryKey = new DataColumn[] { tags.Columns[0], tags.Columns[1], tags.Columns[2] };
24 Data data = new Data(projectTable, literatureTable, personTable, tags);
25 LoadTags(data);
26 LoadRoles(data);
27 return data;
28
29 }
30
31 // Saves a data object
32 public override void SaveData(Data data)
33 {
34 SaveProjects(data);
35 SaveLiterature(data);
36 SavePersons(data);
37 SaveTags(data);
38 }
39 // Load projects
40 private Dictionary<int, Project> LoadProjects()
41 {
42 Dictionary<int, Project> projectTable = new Dictionary<int, Project>();
43
44 string projectPath = Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) + Path.DirectorySeparatorChar + "

Projects.XML";
45 if (!File.Exists(projectPath))
46 return projectTable;
47
48 using (System.Xml.XmlTextReader reader =
49 new System.Xml.XmlTextReader(projectPath))
50 {
51 Project project = null;
52 while (reader.Read())
53 {
54 reader.MoveToContent();
55
56 if (reader.NodeType == System.Xml.XmlNodeType.Element &&
57 reader.Name == "Project")
58 {
59 if (project != null)
60 projectTable.Add(project.ID, project);
61 project = new Project(0, "", "", "", "");
62 }
63
64 if (reader.NodeType == System.Xml.XmlNodeType.Element &&
65 reader.Name == "ID")
66 {
67 reader.Read(); reader.MoveToContent();
68 project.ID = Convert.ToInt32(reader.Value);
69 }
70
71 //... More reading of variables ...
72
73 if (reader.NodeType == System.Xml.XmlNodeType.Element &&

60 SCRAML



9.1. PROGRAMMING

74 reader.Name == "Department")
75 {
76 reader.Read(); reader.MoveToContent();
77 project.Department = reader.Value;
78 }
79
80 }
81 if (project != null)
82 projectTable.Add(project.ID, project);
83 }
84 return projectTable;
85 }
86
87 // Saving projects and roles.
88 private void SaveProjects(Data data)
89 {
90 List<Project> list = new List<Project>();
91 List<Role> roles = new List<Role>();
92 foreach (Project p in data.ProjectTable.Values) list.Add(p);
93
94 using (XmlWriter writer = XmlWriter.Create(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) + Path.

DirectorySeparatorChar + "Projects.XML", writerSettings))
95 {
96 writer.WriteStartElement("Projects");
97 for (int i = 0; i < list.Count; i++)
98 {
99 // Write XML data.

100 writer.WriteStartElement("Project");
101 writer.WriteElementString("ID", list[i].ID.ToString());
102 writer.WriteElementString("StartDate", list[i].StartDate.ToString());
103 writer.WriteElementString("Title", list[i].Title);
104 writer.WriteElementString("Department", list[i].Department);
105 writer.WriteElementString("Subject", list[i].Subject);
106 writer.WriteEndElement();
107
108 roles.AddRange(list[i].Roles);
109
110 }
111 writer.WriteEndElement();
112 writer.Flush();
113 }
114
115 using (XmlWriter writer = XmlWriter.Create(Path.GetDirectoryName(Assembly.GetExecutingAssembly().Location) + Path.

DirectorySeparatorChar + "Roles.XML", writerSettings))
116 {
117 writer.WriteStartElement("Roles");
118 for (int i = 0; i < roles.Count; i++)
119 {
120 // Write XML data.
121 writer.WriteStartElement("Role");
122 writer.WriteElementString("Project", roles[i].Project.ID.ToString());
123 writer.WriteElementString("Person", roles[i].Person.UserName);
124 writer.WriteElementString("Type", roles[i].Type.ToString());
125 writer.WriteEndElement();
126 }
127 writer.WriteEndElement();
128 writer.Flush();
129 }
130 }
131
132 ... More Save and Load functions ...

Student Catalogue for Reviewing And Managing Literature 61



Part III

Implementation

This section describes the implementation of the program. It also
highlights the differences between the developed program and the
original design. Some changes are done during implementation,
these are often caused by the programming language in use or be-
cause of oversights in the original design document. Only the most
interesting changes to the program structure and functionality are
showcased.



CHAPTER

10

Implementation

10.1. Environment

Programming Language The program is implemented using Microsoft .NET Framework
and C#. The integrated developer environment(IDE) Microsoft Visual Studio is used.
The most notably used class libraries from the .NET framework in the program are
System.Windows.Forms and System.Runtime.Remoting. System.Windows.Forms and
related libraries provide the user interface base code and System.Runtime.Remoting
provides a readily available RMI implementation. Other classes handling the filesystem,
data structures and collections are also used in the program. Alternatively an open-
source implementation of the framework and included class libraries like Mono could
have been used. This was rejected because the implementation of basic libraries like
System.Windows.Forms is still lacking and because the program developers are trained
in the use of Microsoft Visual Studio.

Assemblies The program is divided into several projects, each outputting an assembly.
.NET creates 3 types of assemblies, a console application, a windows application and
a class library. Console application open in the console where the program output
is shown and input is made. Windows applications open as GUI windows using the
System.Windows.Forms library. Both are EXE files. Class libraries are DLL files, these
are shared assemblies that are often reused in different programs. Our program consists
of three main assemblies and some extra class libraries.

Client The Client part of the program, implements the GUI component and Client-API. It
is a Windows application.

Server The Server part of the program, implements PersistentData, Catalogue, AccessHan-
dler and Server-API. It is a Console application.

Shared Contains the common elements Client and Server share. These are primarily the
structures and messages needed in network communication.

Custom Controls Several custom controls were implemented for use in the Client assem-
bly. The most interesting of these is the TagControls project, it contains custom
controls for displaying, adding and removing tags. It also contains the TagCloud
control. Custom controls are primarily interesting because they are usable within
the Visual Studio Designer, easing development of the GUI.

10.2. Implementation vs. Design

Data Representation The program refrains from using the standard and usually pre-
ferred data storage method, Relational Databases. This decision was taken because
implementing a program using Relational Databases would not strengthen the devel-
opers’ knowledge of Object Oriented Programming. Instead an in-memory collection of

Student Catalogue for Reviewing And Managing Literature 63



Chapter 10. Implementation

Dictionaries and lists are used. The Tags in the program however are implemented us-
ing an in-memory DataTable object which represents a relational table. This was done
purely for performance and simplicity.

Data is saved using .NET’s built in binary serialization feature, this choice was made
when an attempt to implement it, as an alternative to saving in XML files, resulted in
more stable and simpler code than that used for saving XML files. Though it is worth
noting that saving in XML is still possible by changing very little source code as shown
in the following code:

Snippet of Main() in Startup.cs in the server project
31 // Create the persistent data layer
32 // IPersistentData persistentdata = new BinaryData(Path.GetDirectoryName( Assembly.GetExecutingAssembly().Location)); //

change this to:
33 IPersistentData persistentdata = new XmlData(); // this

Searching by Relevance To implement the feature of searching by relevance, that is
finding other material in the system which is relevant to a single piece of literature, tags
are implemented using the folksonomy theory, see appendix D on page 120. Tags, which
are small keywords, can be assigned to any kind of material in the system by any user,
if two pieces of material have the same tags they are relevant to each other. The more
tags they have in common the more relevant they are to each other.

Client Error Handling The design document specified the usage of a common Error han-
dling class. This feature was not implemented in the program, because all error mes-
sages are displayed using the MessageBox function of System.Windows.Forms. Another
error handling class was however implemented to handle network connection errors.
The ReconnectHandler implements the IAccessHandler interface and encapsulates all
calls to the Client-API AccessHandler with a Try-Catch block. If the connection to the
server fails, an exception is thrown and ReconnectHandler can attempt to reestablish the
connection. For this implementation, if a single reconnection attempt fails the Reconnec-
tHandler shows that reconnection failed and the re-throws the exception, crashing the
Client. A class or form to handle multiple reconnection attempts is needed to improve
this. The problem with reconnection errors, causing exceptions was discovered relatively
late in the process and therefore this proof-of-concept solution was implemented.

Utils class A simple class for static functions used in both Server and Client was im-
plemented in the Shared assembly. The HashedValue function for generating hashes of
passwords was moved from Person to the Utils class. This was done because the Person
class is located in the Server assembly.

Error Messages Calling methods on the AccessHandler can result in errors as a result
of bad input, faulty network connection or missing privileges. These errors are handled
in a couple of different ways. The Messages enumeration is the preferred method, it is
used for all update commands. The Messages Enum is fairly short and do not return
very descriptive error messages. This could be rectified by adding several error messages
to the enumeration, or even implementing a function on the AccessHandler that gets last
occurred error. Implementation of this was not prioritized, because if an error occurs
when for example creating a project, being able to know that it either just failed, often
because of faulty input, or the user was not allowed to create the project, are messages
enough to describe most if not all functions on the AccessHandler.

64 SCRAML



10.2. IMPLEMENTATION VS. DESIGN

Method calls that return actual data have different return values when an operation
fails. This is most often implemented by returning NULL instead of the data requested.
In these cases a GetLastError function on the AccessHandler might be preferable, but
this also is of little importance until other clients, beyond the one implemented by us,
are put to use. Implementing other clients might be difficult without very clear error
messages on failed method calls on the AccessHandler.

Following is the Messages enumeration and an example of its usage in RMIAccessHan-
dler:

Messages Example
1 /// <summary>
2 /// This enumeration contains the possible messages for the server-side methods to return.
3 /// </summary>
4 public enum Messages
5 {
6 OK,
7 LoginFailed,
8 UserExists,
9 OperationNotAllowed,

10 Fail,
11 UserHasAlreadyTagged
12 }
13
14 public partial class RMIAccessHandler
15 {
16 /// <summary>
17 /// First make a check if the password is correct. If yes call the corresponding method on the catalogue.
18 /// </summary>
19 /// <param name="user">The user’s username</param>
20 /// <param name="password">The user’s password</param>
21 /// <returns>Messages.OK on success and Messages.LoginFailed on fail.</returns>
22 public Messages Login(string user, string password)
23 {
24 Person p = catalogue.GetUser(user);
25 if (p == null)
26 return Messages.LoginFailed;
27
28 if (p.Password == password)
29 {
30 this.user = p;
31 return Messages.OK;
32 }
33
34 return Messages.LoginFailed;
35 }
36 }

Use-case Discrepancies Edit comment is currently not possible, neither is delete com-
ment. Delete comment has ramifications because deleting a comment that has replies is
not accepted behavior. It was decided during implementation that editing and deleting
comments was not to be implemented. If an error was made in a comment, users will
have to add a reply to the comment to point out the error. Remove User also was not im-
plemented, this was done because deleting a user can result in cascading deletes. Each
user has a Person class which is then used in a multitude of other classes to identify
the creators of the object, in order to do permission testing. If a user is deleted, con-
sequently all objects related to that person will have to be deleted. The solution to this
problem is simply disabling a user instead, easily done by changing the users password
to an unguessable value. As with remove user, this would be the responsibility of the
moderator.

Usage of data structures in networking Fairly early on it was discovered that implement-
ing an interchangeable network architecture caused object oriented programming to not
be optimal for the task. Thus the solution implemented was creating data structures
that could contain all data of an object on the server. These data structures are then
passed when information is retrieved from or update on the server. An example of the
use of these structures in creating, updating and getting info about a project follows:

Student Catalogue for Reviewing And Managing Literature 65



Chapter 10. Implementation

Demonstration of usage of ProjectInfo
1 /// <summary>
2 /// Contains data about a Project. Used in network transmissions and representation on PersistentData.
3 /// </summary>
4 [Serializable]
5 public struct ProjectInfo : ISearchable
6 {
7 public int id;
8 public DateTime startDate;
9 public DateTime endDate;

10 public string subject;
11 public string title;
12 public string department;
13 public string synopsis;
14 public bool submitted;
15
16 public ProjectInfo(int id, DateTime start, DateTime endDate, string subject, string title, string department, string synopsis,

bool submitted)
17 {
18 this.id = id;
19 this.startDate = start;
20 this.endDate = endDate;
21 this.subject = subject;
22 this.title = title;
23 this.department = department;
24 this.synopsis = synopsis;
25 this.submitted = submitted;
26 }
27
28 [ISearchable Members]
29 }
30
31 /// <summary>
32 /// This interface makes it possible to create an accesshandler. it is used for creating e.g. the RMI-AccessHandler.
33 /// </summary>
34 public interface IAccessHandler
35 {
36 // Projects
37 ProjectInfo[] ListProjects();
38 ProjectInfo GetProjectInfo(int id);
39 Messages CreateProject(ProjectInfo pi, out int id);
40 Messages UpdateProject(ProjectInfo info);
41 Messages DeleteProject(int id);
42
43 ... CONTINUED ...
44 }
45
46 /// <summary>
47 /// Small demonstration class that works on projects
48 /// </summary>
49 public class ProjectDemo
50 {
51 private IAccessHandler accesshandler;
52 public ProjectDemo(IAccessHandler accesshandler)
53 {
54 this.accesshandler = accesshandler;
55 }
56
57 public void DemoCreateProject()
58 {
59 ProjectInfo pi = new ProjectInfo(-1, DateTime.Now, DateTime.Min, "‘Demonstrating InfoStructs"’, "‘Project Test"’,

"‘Computer Sciecnt"’, "‘"’, false);
60 int assignedID = -1;
61 Messages ml = accesshandler.CreateProject(pi, assignedID);
62 if(ml != Messages.OK)
63 {
64 MessageBox.Show("‘Error"’);
65 }
66 }
67
68 public void DemoGetProject(int id)
69 {
70 // Gets a projects data using its ID.
71 ProjectInfo pi = accessHandler.GetProjectInfo(id);
72 }
73
74 }

The info structs are also easily serializable and can therefore be used in saving the
server’s data as well as done in the BinaryData class.

Searchable types To allow for the results of a search to be displayed in one Data-
GridView, everything that can be found using search has a struct that implements the
ISearchable. This was done so AccessHandler was able to return a list of different data
structures and still be able to display simple common information about the items, such
as title and text. The data structures in the list can be typecasted into the correct type.
In C# the keyword ”‘is”’ is used to check the type of the ISearchable object. The ”‘is”’

66 SCRAML



10.3. THE GUI

keyword returns true if an object can be casted to the specified type and false other-
wise. This means that a ProjectInfo in an array of ISearchables can be used by doing the
following:

Demonstration of casting ISearchables
1 public void SomeFunction(IAccessHandler accesshandler)
2 {
3 ISearchable[] results = accesshandler.ListItems(ResultType.Project | ResultType.Literature); // Lists all projects and

literature.
4
5 foreach(ISearchable i in results)
6 {
7 if(i is ProjectInfo) // if the result is a project do something you’d do with a project
8 {
9 ProjectInfo pi = (ProjectInfo)i;

10 MessageBox.Show(pi.department);
11 }
12 else if(i is LiteratureInfo) // else if its a litertureinfo, do something with that
13 {
14 LiteratureInfo li = (LiteratureInfo)i;
15 MessageBox.Show(li.author);
16 }
17 }
18 }

If a result of a search is somehow connected to a relevance value, like when searching
by tags and saving how many times a tag has been used on a result, then the SearchRe-
sult class is used. SearchResult is merely a wrapper class that wraps an Item of the
ISeachable interface, it also implements the ISearchable interface itself, returning the
wrapped items information for every method in the ISearchable interface. SearchResult
also has a float value that is initialized during a search procedure in that Catalogue
component. When searching by free-text the relevance value is assigned using the term
frequency-inverse document frequency algorithm [17] to an arbitrary value which when
sorted on should reveal the most relevant result based on the input text.

10.3. The GUI

The GUI consists overall of three windows, the Main view, the Project view and the
Literature View. Apart from the primary windows we have a number of dialog windows
which help the user. We have the following secondary windows in our program:

Login.cs The login form is the first thing the user meet when the user starts the program.
This form allows the user to log on to the server, change server settings (opens
LoginConfig.cs) or create a new user (opens CreateNewUser.cs). If the user is not
new to the system this form can remember login information for the user.

LoginConfig.cs This window allows the user to change the server’s address and port.
This form can only be accessed from the login form, since all other windows require
the network components running.

CreateNewUser.cs This is a simple form that allows the user to create a new user. This
form can only be accessed from the login form for the same reasons as above.

Reference.cs This form contains a list of projects or literature and a filtering function
with which to search in the list. It allows the user to add a reference to a project or
a piece of literature. This form is used in project view and in the literature view.

GetAUser.cs This form is only used by the project view. It enables adding a user or
supervisor to a project. This form is almost identical to the reference form. The
only difference to the above is that it contains a list of user in stead of literature.

Student Catalogue for Reviewing And Managing Literature 67



Chapter 10. Implementation

CreateSuggestion.cs This form allows a supervisor to add a suggestion to a project. It
is only accessible from the project view if the current user is a supervisor to the
project. The form contains a list of all literature in the system and a reason text
box.

About.cs Displays information about the program.

Several standard controls were applied and adjusted to suit our needs, but custom
controls for the tag feature and for displaying comments had to be developed as well.
Our custom controls are describe in section 10.3.4 on the facing page.

10.3.1. The Main Window:

The main window can be seen on figure 10.2 on the next page. In the design of the
main window we have been inspired by Apple iTunes1. iTunes is a music player and
music shop. We think that iTunes have one of the best and most user friendly browsers
we have seen. In our program the user needs to brows through a potentially very large
amount information. So the user need to be able to filter the information in an easy and
efficient manor. We think that the iTunes interface actives that. And that is why we have
chosen to be inspired by iTunes. A picture of the iTunes interface can be seen in the
appendix D.4 on page 123.

If the user clicks any of the item in the side bar the information relevant to that item
is displayed in the data viewing area. For instance if the user clicks ”My projects” then
the projects that the user is a member of is displayed. If the user double clicks on any of
the items in the data viewing area a new window, the project view or the literature view
is displayed. Both this windows have tabs containing various information on that item.
Above the data viewing area and side bar we have a number of buttons for different
function for instance add new project or literature. And in the right side we have a
search field. All this things are inspired by iTunes. Just out side the the search field we
have a button which when pressed displays the tag cloud.

10.3.2. Project View:

The project view can be seen on figure 10.2 on the next page. It is divided into 3 tabs
where the first tab consists of various textboxes containing general information about the
project and a TagContainer. The second tab contains information about all the members
and supervisors there have been added to the project. If the current user is the creator
of the project the user can add new members or supervisors to the project from this tab.
The third tab contain all the suggestion, references and reviews for the project. If the
current user is a member of the project then the user can add new references or reviews
to the project. It is also possible to export all the references and reviews to some type of
file containing the sources for the project for instance a bibtex file.

10.3.3. Literature View:

The literature view can be seen on the figure 10.3 on page 70. Like the project view it is
also divided into tabs. The first tab has textboxes containing general information about
the literature and a TagContainer. The other tabs holds references and comments for
the current literature entry. Apart from viewing and adding references in the references
tab it is possible read and add reviews to different project. There can only be one review
as of one project each review can be commented.

1See: www.apple.com/itunes/

68 SCRAML



10.3. THE GUI

Figure 10.1.: The Main view window.

Figure 10.2.: The Project view window.

10.3.4. Custom Controls

In our implantation we have a number of custom controls. The reason we have custom
controls is that we have some elements in our program that are not straight forward
to implement with windows forms, contain several controls and functions and are used
several times on the client. So to avoid writing or copying the same code several times we
have created custom controls. A custom control is a form of encasement for functions

Student Catalogue for Reviewing And Managing Literature 69



Chapter 10. Implementation

Figure 10.3.: The Literature entry view window.

and controls which has non or very low coupling to the rest of the program. Another
advantage of custom controls is that they can be used like any other control in the
designer in Microsoft Visual studio.

In our implementation we have the following custom controls:

• Tags

– Tag container

– Tag cloud

• Comments

• Doing stuff

We will in the following subsection describe our custom controls and their usage.

Tags

In our implantation we have two ways of displaying a list of tags: The tag cloud and the
tag container. The input for both controls is a list with tags and user names where a tag
can be repeated. The weight of a tag is calculated by finding the tag used most times.
For instance if a project has two different tags used several times by different users: The
first tag is used 4 times and the other is used 2 times. Then the most used tags weight
is 100% and the other tag which is used half as mush and is therefor weighted 50%.

The tag container (seen in figure 10.4) is used to view, add and remove tags in a project
or a piece of literature. The tag container is divided into two parts, in the first part all the
current users own tags are displayed in the other all other tags are displayed. Each tag
is displayed with a keyword, a status bar indicating the weight of the tag, and a remove
button if the current user have added the tag to the current project and an add button
if the user has not. The tag container also contain a text box for adding new tags. The
tag container is used in the project view and in the literature view.

70 SCRAML



10.3. THE GUI

Figure 10.4.: The tag container

The tag container has two special events TagAdded and TagRemoved. These two events
are fired when a user adds of removes a tag from the container.

The tag cloud (seen in figure 10.5) is another way for displaying tags. In the tag cloud
each tag is sized after how often it is used. The user is able to sort the tags alphabetically
or after weight, and additionally the user is able to instruct the control to show either all
tags on the system, or only show their own tags.

The tag cloud has one special event called TagSelected. This event is fired when the
user clicks one of the tags in the tag cloud.

Figure 10.5.: The tag cloud control

Comments

The comments control (seen in figure 10.6) enables the user to add, show and edit
comments. The comment control contains a treeview where the user can navigate the
comments and a viewing and editing area. The comment control is used ind the project
view and in the literature view. Unlike the tag controls the comment control has a very
high coupling to the rest of the program since it need the accesshandler to work.

Doing stuff

The Doing stuff control (seen in figure 10.7) is a very simple control which only displays
the text ”Please wait” and a small, animated icon. This control is used to tell the user that
the program is working on something. We use this control for instance when the user

Student Catalogue for Reviewing And Managing Literature 71



Chapter 10. Implementation

Figure 10.6.: The comment control

logs on the system. This might take a few seconds and instead of the program freezing
we start the doing stuff and it tells the user that the program is currently working.

Figure 10.7.: Doing Stuff controle

72 SCRAML



Part IV

Test

Testing ensures the program works as expected. It can also con-
tribute to a better user experience by highlighting previously un-
known flaws in the design and implementation. The system is
exposed to three different types of tests, blackbox, whitebox and
usability. Black- and whitebox tests are unit test. They test spe-
cific parts of the program. Usability tests find previously unknown
problems in the system by exposing it to end-users.



CHAPTER

11

Unit tests

When performing blackbox testing the units are regarded as opaque entities where only
interfaces are visible. That is, the internal implementation details are neglected. The
tests consist of providing the different units’ interfaces with inputs and then checking
if they return the correct outputs. We test the Catalogue class and the PersistentData
component using blackbox testing

Furthermore we have decided to do a whitebox test of a single complex algorithm, the
search algorithm in catalogue. That means testing all possible paths inside the algorithm
instead of just testing the interface.

For the unit testing we have deployed the third-party NUnit testing framework which
is developed for testing code under the .NET framework. It involves including testing
code in the target assembly and loading the assembly into NUnit once compiled. To be
more specific when a class B is to be tested a corresponding test class is written and
marked-up with C# attributes provided by NUnit. The public methods of the B class
are represented in the test class as parameterless methods returning void. In each test
method the corresponding method in B is fed with test data, and then an assertion is
made of the nature of the output. When NUnit is run it finds all testing procedures
in the target assembly and runs them one by one and reports any differences between
asserted and actual output.

11.1. Blackbox testing

Persistency and efficiency is highly prioritized in the factor table 7.1 on page 42. There-
fore we have decided to do blackbox testing on the persistentdata and model layer (cat-
alogue) of our system.

In this section we will only provide a code snippet of the PersistentDataTest class.
The snippet does only describe the general idea of the our unit test and therefore many
details are not included.

The rest of the test classes and their documentation can be found in the program
documentation on the CD-ROM.

The PersistentData layer is tested by using the BinaryData implementation. That
means both the IPersistentData interface and an actual implementation is tested. The
basic idea behind this test is to generate and save a lot of data and make sure it can
be retrieved again. Additionally the retrieved data must be correct. Because the test is
written for the IPersistentData interface, it will work on any class that implements the
interface.

The following code snippets shows how the comment part of PersistentData is tested.
Given the fact that a comment can be commented makes testing complex and therefore
interesting.

First the PersistentData is initialized with a number of project and literature entries.
Comments are added to the literature entries and all projects are assigned different types
of references all of which are assigned comments. All comments also get comments until
a particular depth is reached.

74 SCRAML



11.1. BLACKBOX TESTING

Snippet of TestDatabase() in PersistentDataTest.cs
1 public static void TestDatabase(int literatureCount, int projectCount, int commentLevel, int commentCount, [snip...] Some more

parameters [snip])
2 {
3 // Initialize the data and a new dictionary to holds comments
4 DataContainer data = new DataContainer();
5 Dictionary<int, Comment> allComments = new Dictionary<int,Comment>();
6
7 // Create a number of literature and add comments to it
8 for (int i = 0; i < literatureCount; i++)
9 {

10 Literature p = new Literature([snip...] Some parameters [snip]);
11 data.LiteratureTable.Add(p.ID, p);
12 CreateShitloadOfComments(commentLevel, commentCount, data, p.Comments, allComments, CommentType.Literature);
13 }
14
15 // Create a number of projects with references and add comments to these references
16 for (int i = 0; i < projectCount; i++)
17 {
18 [snip...] Project creation and saving [snip]
19
20 Reference r = new Reference([snip...] Some parameters [snip]);
21 CreateShitloadOfComments(commentLevel, commentCount, data, r.Comments, allComments, CommentType.Reference);
22 p.References.Add(r);
23
24 Suggestion s = new Suggestion([snip...] Some parameters [snip]);
25 CreateShitloadOfComments(commentLevel, commentCount, data, s.Comments, allComments, CommentType.Reference);
26 p.References.Add(s);
27
28 Review rv = new Review([snip...] Some parameters [snip]);
29 CreateShitloadOfComments(commentLevel, commentCount, data, rv.Comments, allComments, CommentType.Reference);
30 p.References.Add(rv);
31 }
32
33 // Finally save everything to the PersistentData
34 data.Tags.AcceptChanges();
35 database.SaveData(data);
36
37 ...TO BE CONTINUED...
38 }

After all data is created it is saved, then a test is run to ensure the data was correctly
saved. All data is loaded from the binary files and back into memory. Now every litera-
ture entry and project reference is iterated through and the TestComments() method is
called.

Snippet of TestDatabase() in PersistentDataTest.cs
1
2 ...CONTINUED...
3
4 // Load the data
5 DataContainer newData = database.LoadData();
6
7 // Iterate through all references and test comments
8 foreach (Project p in data.ProjectTable.Values)
9 {

10 foreach (Reference r in p.References)
11 {
12 Reference r2 = null;
13 foreach (Reference r3 in p2.References)
14 {
15 if (r3.Info.Equals(r.Info)) r2 = r3; break;
16 }
17
18 TestComments(r.Comments, r2.Comments);
19 }
20 }
21
22 // Iterate through all literature and test comments
23 foreach (Literature p in data.LiteratureTable.Values)
24 {
25 bool exists = newData.LiteratureTable.ContainsKey(p.ID);
26
27 if (exists)
28 {
29 Literature p2 = newData.LiteratureTable[p.ID];
30 Assert.AreEqual(p.Info, p2.Info, "Literature Attribute Test");
31 TestComments(p.Comments, p2.Comments);
32 }
33 }

This is the TestComments() method which takes two lists of comments and compares
them with a number of assertions. It recursively compares comments to comments. The
”Assert” methods are used by the NUnit unit-testing tool.

Snippet of TestComments() in PersistentDataTest.cs
1 protected static void TestComments(List<Comment> list, List<Comment> list_2)

Student Catalogue for Reviewing And Managing Literature 75



Chapter 11. Unit tests

2 {
3 foreach(Comment c in list)
4 {
5 // Make a new comment.
6 Comment c2 = null;
7
8 // Check if the ID of the two comments match. If yes set the new comment to point to the one in list_2.
9 // The new created comment is used for further comparisons.

10 foreach (Comment c3 in list_2)
11 {
12 if (c3.ID == c.ID)
13 {
14 c2 = c3;
15 break;
16 }
17 }
18
19 // Test if the comment is actually made
20 Assert.IsNotNull(c2, "Comment Exists Test");
21 // Compare the date
22 Assert.AreEqual(c.Date, c2.Date, "Comment Date Test");
23 // Compare the username
24 Assert.AreEqual(c.Poster.UserName, c2.Poster.UserName, "Comment Poster Test");
25 // Compare the text
26 Assert.AreEqual(c.Text, c2.Text, "Comment Text Test");
27 // Compare the title
28 Assert.AreEqual(c.Title, c2.Title, "Comment Title Test");
29
30 // Make a recursive call if there are more comments in the list
31 if (c2 != null) TestComments(c.Comments, c2.Comments);
32 }
33 }

This method creates a given number of nested comments by using recursion. It is
called in the TestDatabase() method.

Snippet of CreateShitloadOfComments() in PersistentDataTest.cs
1 protected static void CreateShitloadOfComments(int level, int commentCount, DataContainer data, List<Comment> comments, Dictionary

<int, Comment> allComments, CommentType type)
2 {
3 if (level <= 0) return;
4
5 for (int i = 0; i < commentCount; i++)
6 {
7 Comment c = new Comment(snip...] Some parameters [snip]);
8 comments.Add(c);
9 allComments.Add(c.ID, c);

10
11 // Make a recursive call with (level - 1). The level parameter is given in the TestDatabase() method.
12 CreateShitloadOfComments(level - 1, commentCount, data, comments, allComments, CommentType.Comment);
13 }
14 }

11.2. Whitebox testing

We have decided to do a whitebox test of the search algorithm because it is one of the
most complex algorithms in our system. We have decided to use the basic path test[11].

First the Cyclomatic Complexity[15] must be calculated. To do this a flow chart dia-
gram of the algorithm is created. An easy way to do this is by abstracting the program
flow of the algorithm into high level pseudo code as seen on the listing ”Pseudo program
flow of Search()”. The capital letters A to J represent conditions and the lowercase letters
o to z represent blocks of statements.

Pseudo program flow of Search()
1 Public SearchMethod(string query, ResultType type)
2 {
3 if (A) return; // Check if query.Length < 3. If true return an empty list.
4
5 do o; // Some initializations
6
7 if (B) // Check if (type == ResultType.Literature)
8 {
9 do p; // Search

10
11 if (C) do q; // If anything found add it to the list of results
12 }
13
14 if (D) // Check if (type == ResultType.Person)
15 {
16 do r; // Search
17

76 SCRAML



11.2. WHITEBOX TESTING

18 if (E) do s; // If anything found add it to the list of results
19 }
20
21 if (F) // Check if (type == ResultType.Project || type == ResultType.Review)
22 {
23 do v; // Traverse projects
24
25 if (G) // Check if (type == ResultType.Project)
26 {
27 do u; // More searching
28
29 if (H) do v; // If anything found add it to the list of results
30 }
31
32 if (I) // Check if (type == ResultType.Review)
33 {
34 do x; // More searching
35
36 if (J) do y; // If anything found add it to the list of results
37 }
38 }
39
40 do z; // Calculate the relevance of found results
41
42 return; // Return the results list
43 }

The Cyclomatic Complexity[15] can be calculated by either number of ”closed regions” +
1 in the flow chart diagram 11.1 on the following page or by the formula number of control
structures + 1. In our case that the Search() algorithm has a cyclomatic complexity of
11. A basic set of independent paths in Search() therefore consists of 11 paths. The
independent paths in a basic set can be combined to construct any possible path in
the program flow. The idea behind basic path testing is testing all independent paths
in a basic set and therefore in principle testing any possible path. The definition of an
independent path is as follows: ”‘An independent path is path that adds at least one new
command or condition relative to already identified independent paths”’ [2].

From the flow chart diagram 11.1 on the next page a basic set of independent paths
is constructed. It can be seen in the table 11.1. The Node Sequence corresponds to
the path on the diagram 11.1 on the next page. The ”Criteria” colomn provides a way
to access that particular path in the algorithm. The reason for path 7 to be untestable
is that condition ”F” requires ResultType to be ResultType.Project or ResultType.Review
and therefore must at least one of the conditions ”G” or ”I” be true. The actual whitebox
testing can be found in the file ”WhiteboxTesting.cs”.

Path: Node Sequence: Criteria:
1 A A query with length < 3
2 A,o,B,D,F,z Searching for an unsupported ResultType
3 A,o,B,p,C,D,F,z Searching for literature which is not found
4 A,o,B,p,C,q,F,z Searching for literature which is found
5 A,o,B,D,r,E,F,z Searching for a person which is not found
6 A,o,B,D,r,E,s,F,z Searching for a person which is found
7 A,o,B,p,C,D,F,t,G,I,z Cannot be tested
8 A,o,B,p,C,D,F,t,G,u,H,I,z Searching for a project which is not found
9 A,o,B,p,C,D,F,t,G,u,H,v,I,z Searching for a project which is found
10 A,o,B,p,C,D,F,t,G,I,x,J,z Searching for a review which is not found
11 A,o,B,p,C,D,F,t,G,I,x,J,y,z Searching for a review which is found

Table 11.1.: A basic set of independent paths of Search()

The figure 11.2 on page 79 shows a screenshot of NUnit running the test classes. The
Catalogue and the binary implementation of PersistentData is tested by using black box
tests. Furthermore the 10 testable independent paths of the Search() method is tested
with white box testing. That is together 29 tests and 97 assertions of which some of

Student Catalogue for Reviewing And Managing Literature 77



Chapter 11. Unit tests

Figure 11.1.: Flow Chart Diagram over the Search() method.

78 SCRAML



11.2. WHITEBOX TESTING

these are recursive and iterative.

Figure 11.2.: Screenshot of NUnit running the test classes

Student Catalogue for Reviewing And Managing Literature 79



CHAPTER

12

Usability test

The following sections deal with usability testing of the developed article cataloguing
system. First the test plan is introduced and afterwards the results are presented and
discussed.

12.1. Plan for the usability test

We deploy the template for a usability test plan from [12] – though minor adjustments
to suit our situation are applied.

Purpose

Since it is the first test of the article cataloguing system, the overall purpose of the test
is to uncover whether representatives of our main target user group, that is, university
students in project groups, are able to use the system to a satisfying extent. Furthermore
since the development team has been working on the system for a long period of time,
they simply view the system in a different way than outsiders do, and for that reason
the developers might overlook issues that outsiders are able to spot.

Test objectives

• According to the factor-table (table 7.1 on page 42) ”First time users should be able
to gain an overall understanding of how the system works within a time frame of
10 minutes.” We want to be able to determine if this goal is reached.

• We are interested in evaluting whether the participants are able to use the main
functionality of the system with ease. The main functionality includes:

– Create a new user and login

– Create a new project with users affiliated

– Create a new literature entry and associate it with a project

– Retrieve specific information from a project or literature entry

– Search by tags

– Add a comment

• Through the test we want to acquire an answer to the question: Is the distribution
of information and interplay between the GUI windows sensible to the participants?

User profile

The user is a typical university student in their twenties – male or female. Our persona
character Brian Jensen (see section 3.1.2 on page 21) is an example of a user. What
study programme the user is following is subordinate, since the system is intended to be
used in various project groups regardless of their study content. We could have included

80 SCRAML



12.1. PLAN FOR THE USABILITY TEST

project group supervisors as participants, but we focus on our main user group, and that
is why we delimit our group of participants to comprise university students in project
groups.

Test design – including test environment and equipment

The tests are assessment tests to determine to which extent the system fulfils the de-
mands we have set up. The tests are carried out in the usability lab at the Aalborg Uni-
versity as ”think aloud” tests [12]. The latter to ensure that the participants’ thoughts
with respect to problem solving strategies, considerations, uncertainties and expecta-
tions are caught on video for subsequent analysis.

The usability lab is a three room lab: One test room, one tech-room with the video
recorders and monitors and one room for observers.

Three or four test participants are engaged in the test. The participants participate
in the test individually. All participants are presented for the same exercises – one at a
time. Each test is expected to last around half an hour including debriefing.

To capture possible errors or inappropriatenesses in the exercise design, a dummy
test is performed prior to the real tests. In the dummy test a member of the development
team acts as test participant.

Test monitor role and additional required staff

The same person acts as test monitor through all the tests to minimize the risk of dif-
ferent persons influencing the test results in different ways. After the arrival of the
participants, a written statement is read aloud to each participant by the test monitor.
See the statement (in Danish) in Appendix A.2 on page 107.

The main role of the test monitor during the test is to remind the participant to vocalize
his thoughts. The test monitor is not allowed to provide specific solutions to occurring
problems, only to assist with questions of the type that forces the participant to generate
his own answers.

After the last exercise the test monitor debriefs the participants.
Apart from the test monitor, who is seated next to the participant in the test room, the

following test staff is engaged:

• A technician to operate the video equipment.

• One or more observers situated in the observer room to take notes.

In some situations also a data logger situated next to the technician is required.

Task list

During the test the participant will be introduced to some exercises that he should try
to solve. The exercises must be written such that they describe realistic situations that
the participant might end up in if he were using the system in real life [12, p. 179].

In Appendix A.3 on page 108 we have listed tasks that we want the participants to
solve. This information is presented in task tables followed by templates to the actual
exercises that are given to the participants. The essential aspects of the tasks are:

1. Creation of a new user

2. Creation of a new project

Student Catalogue for Reviewing And Managing Literature 81



Chapter 12. Usability test

3. Creation of a new literature entry

4. Localization of a literature entry

5. Addition of a comment

The Exercises

The exercises handed to the participants are given below but were presented in Danish
to the participants as shown in Appendix A.4 on page 111. An expected solution to each
exercise is developed and included in Appendix A.5 on page 112 in order to ensure the
quality of the exercises.

Exercise 1 – Create a new user

Imagine that you as a student want to use the literature program. Create your own user
account (using your first name as user name and a password by choice) and log into the
program.

Exercise 2 – Create a new project

The underlined text below was excluded from the test because the program was not able
to handle tags correctly at the time where the test took place.

Your group has asked you to create your project with the title ”IT i Aalborg” in the
program. The following tags (keywords) must be attached to the project: Aalborg,
IT, computer, usability and KMD. Furthermore you must add your two group mates
”john82” and ”gitte pj” to the project.

Exercise 3 – Create a new literature entry

You have found a book at the library which is relevant to your project. Add this book in
the system using the following:

Title: Netværksbogen
Authors: Mølgaard og Nielsen
Year of publication: 2002
Publisher: IDG

After this you must ensure that the book has been attached to your project ”IT i Aalborg”.

Exercise 4 – Find literature

Your supervisor has suggested a book for your project but only remembers that it already
exists in the program and that it deals with ”usability testing”. What is the full title of
this book?

Exercise 5 – Add comment

You want to add a short comment to the book ”Handbook Of Usability Testing” by Jeffrey
Rubin, that you had to find in the previous exercise. The wording must be: ”The book is
good because it treats the aspects of a test intensively”.

82 SCRAML



12.2. ANALYSIS OF RESULTS

Debriefing

After the completion of the last exercise, a debriefing of each participant took place.
This has an important role, since it serves as a valuable way to obtain information
that might not have been obtained by just looking at the participants’ solutions to the
exercises. These questions were as the exercises presented in Danish (see appendix A.6
on page 113). The questions are listed below in English:

• What do you best remember from the test?

• What do you think about the user interface?

• What do you think about the organization of the information at the different win-
dows?

• How was the navigation in the program?

• Was anything bothering you?

• Do you feel that something is missing in the program?

• What did you find good about the program?

• Would you find this program useful in your own course?

Evaluation measures and data to be collected

We apply the following evaluation measures:

Time: The time it took the participant to accomplish an exercise.

Categorization of problems: How critical was the problem the participant encountered,
and what caused the problem.

Obviously the rating of problems are not an unbiased, but is down to personal judgment.
To reach a more concise rating we compare the test data to determine if a two or more
participants had the same problem.

The data collection is done with picture-in-picture-video1 and written notes from one
or more observers.

Report contents and presentation

The test results are reported in section 12.2 and the group has the test videos on DVD.

12.2. Analysis of results

In the following sections the data from the usability test will be treated. First a de-
scription of the actual test process will be presented followed by an analysis of the time
participants used for each exercise. After this a thorough evaluation of the issues en-
countered is performed.

1A large picture of the computer screen is merged with a small picture of the participant (and test monitor).

Student Catalogue for Reviewing And Managing Literature 83



Chapter 12. Usability test

The course of the test

Due to cancellations from two people, we ended up with three participants, and the tests
were conducted in one day. It was three male participants ranging from 21 to 24 years
of age. There were two university students and one former. They all had a rather high
level of computer experience. The test crew consisted of a test monitor, a technician and
an observer.

Unfortunately the system was not completely finished when the test was scheduled,
so we had to take the following precautionary measures: Whenever the participants
entered an unfinished part of the system, the test monitor had to interrupt and tell the
participant the state of affairs. Furthermore a few assumptions (for instance that the
system had responded to the users’ actions even though no feedback was provided – due
to unfinished functionality) had to be made in order for the participants to complete the
exercises 2, 3 and 5.

Duration of the exercises

Participant 1 Participant 2 Participant 3

Start End Time Start End Time Start End Time Benchmark

Exercise 1 02:38 03:50 01:12 01:40 03:31 01:51 03:23 04:19 00:56 02:00

Exercise 2 04:49 10:16 05:27 04:40 09:47 05:07 04:40 05:47 01:07 05:00

Exercise 3 10:45 13:05 02:20 10:15 18:22 06:23* 06:16 07:40 01:24 03:00

Exercise 4 14:15 15:23 01:08 18:43 19:25 00:42 08:52 10:20 01:28 02:00

Exercise 5 17:43 20:18 02:35 19:50 23:15 03:25 10:44 11:47 01:03 02:00

Table 12.1.: A table of excercise duration for each participant in the usability test. Glos-
sary: Start: The video clock (minutes:seconds) as the participant had fin-
ished reading the exercise aloud. End: The video clock as the participant
explicitly stated that he felt he had finished the exercise. Time: The du-
ration of the completion of the exercise i.e. End minus Start. Benchmark:
The time constraints specified in appendix A.3 on page 108. *A system
breakdown occurred and required a restart. The duration of this incident is
subtracted.

Table 12.1 shows how long time it took the participants to solve each exercise. A way
to treat the time data depicted in table 12.1 would have been to calculate the mean time
[12, p. 260] and other statistics. However such calculations do not make much sense
because the participants are asked to vocalize their thoughts. Instead the time data
serve as indicators of whether the benchmark requirements specified in the tables: A.1
on page 108, A.2, A.3, A.4, A.5, A.6 and A.7 have been complied.

As seen in Table 12.1 participant 1 exceeds the benchmarks in exercise 2 and 5,
participant 2 in exercise 2, 3 and 5 while participant 3 does not exceed any benchmark.

The time data are not strictly comparable because of the participants’ different back-
grounds. In particular participant 3’s fast performance stand out. This is due to the
fact that he – contrary to participant 1 and 2 – did not have any prior experience with
usability testing and for that reason did not spend as much time explaining strategies
and considerations as the others. The advantage of him lacking this experience is that
a more realistic portrait of the use of the system is obtained.

When participant 2 attempted to complete exercise 3 he first settled on one strategy
and then switched to another later on. This is the reason for the exceptionally long time

84 SCRAML



12.2. ANALYSIS OF RESULTS

he took on this exercise.

In Table 5.1 on page 39 the quality goal ”Efficient” is rated ”very important”. The fact
that participant 3 spends maximum 1 minute 30 seconds completing a task suggests
that this goal has been reached. A more participant extensive test with no think aloud
demands would be a way to try to verify this suggestion. Such a test however is beyond
the scope of this project.

Evaluation of issues

In the following sections the encountered issues are shown with a suggestion on how
to handle them. All issues discovered are categorized by which views they appeared in.
Furthermore we have prioritized the problems according to how frequently they occurred
or how urgent we judged them to be. Table 12.6 on page 90 lists the discovered issues
along a rating of the severity of each issue. The rating scale used is described by Rolf
Molich[10], and has the following steps: cosmetic, serious and critical. The delay2,
frustration and difficulty in solving the task caused increases from cosmetic through
serious to critical. Furthermore does a catastrophe occur if two or more participants
encounter the same critical issue independent of each other.

General issues

General issues 

 The following 
experienced the 
issue:  

 

Issue 
number

: 
Issue / Cause P1 P2 P3 Possible solution 

1 

It is confusing that there 
are the subglobal buttons 
”Save” and ”Save and 
Close” on both the 
Project and Literature 
views. 

X X X 

The “Save” buttons could 
be moved to the context 
where they are used, 
which leaves only a 
subglobal “Close” button 
to check if the user has 
unsaved data and asks the 
user if that should be 
saved. 

2 

Tooltips disappear too 
fast – especially in the 
search field due to a long 
text. 

X   

Either the text should be 
shortened or the time 
delay increased. 

3 
Empty views or lists are 
confusing.  X  

Place a message in these 
views which explains the 
reasons for the emptiness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12.2.: Table showing general issues and possible solutions

Table 12.2 lists the general usability issues found during the test. The ”Save and
close” button issue 1 is illustrated in Figure 12.1 on the following page and the tool tip
issue 2 is illustrated in Figure 12.2 on the next page. The reason that empty views or
lists are confusing is that the user might think that something has went wrong and want
to know how to make data available in those views.

Student Catalogue for Reviewing And Managing Literature 85



Chapter 12. Usability test

Figure 12.1.: This screenshot illustrates the general ”Save and close” button issue 1.

Figure 12.2.: This screenshot illustrates the general tool tip issue 2.

Figure 12.3.: This is a screenshot from the Main view illustrating the ”My” / ”All” issue
4, the ”Search” field visibility issue 5 and the ”Description” issue 7.

86 SCRAML



12.2. ANALYSIS OF RESULTSIssues related to the Main view: 

 

 The following 
experienced the 
issue:  

 

Issue 
number

: 
Issue / Cause P1 P2 P3 Possible solution 

4 

The participants were 
uncertain about the 
meaning of “My” and 
“All”. 

X X X 

Could be explained in a 
help menu and/or in the 
introduction to the system.  

5 

The participants do not 
find the search 
functionalities (Search 
field and Tag Cloud) in 
the upper right corner of 
the main view because 
they do not attract much 
attention. 

 X X 

They can be repositioned 
or be made more visible – 
or just left unchanged, 
since the position is rather 
standard – as seen on 
several web pages for 
instance. 

6 

When clicking “All” or 
“My” projects and 
literature are mixed in the 
Main view list. 

 X  

Rearrangement of the 
items in the Main view 
sidebar such that it is 
divided into “Projects” with 
the subcategories ”My 
projects” and “All projects” 
and “Literature” with the 
subcategories ”My 
literature”  and “All 
literature”. 

7 

A participant was 
confused about the 
“Description” label in the 
Main window – he 
thought it would contain 
a summary of a literature 
entry. 

  X 

“Description” could be 
removed. Instead project 
and literature info could be 
displayed in the sidebar. 

 
 
 
 
 
 
 
 
 
 

Table 12.3.: Table showing issues in the Main view and possible solutions

Issues related to the Main view

The issues found in Main view are listed in Figure 12.3. The ”My” / ”All” issue 4,
the ”Search” field visibility issue 5 and the ”Description” issue 7 are all illustrated in
Figure 12.3 on the preceding page.

Issues related to the Project view

The issues in the Project view are listed in Figure 12.4 on the following page. The ”Add
reference” issue explained in issue 11 is illustrated in Figure 12.4 on the next page. The
other issues related to the project view are not depicted because they are suggestions
from the test participants and not easy to depict.

Issues related to the Literature view

The issues encountered in the Literature view are listed in Figure 12.5 on page 89. The
”Details” field issue 12 and the ”Create comment” / ”Submit comment” issue 14 are
shown in Figure 12.5 on page 89. The ”Year of publication” issue 13 is illustrated in
Figure 12.6 on page 89.

2By delay we mean the extra time needed for the participant to overcome the issue

Student Catalogue for Reviewing And Managing Literature 87



Chapter 12. Usability test

Issues related to the Project view: 
 
 
 The following 

experienced the 
issue:  

 

Issue 
number

: 
Issue / Cause P1 P2 P3 Possible solution 

8 

Participants were unable 
to add group members 
to a project if it was not 
saved. 

X X X 

Auto-save the project info 
when another tab is 
selected. 

9 

The participant expects 
that he can create a 
new literature entry from 
within the “Literature” tab 
in the “Project” view. 

 X  

Add a “Create new 
literature entry” button in 
the “Add Reference” 
dialog. 

10 

A participant expected 
that he could add a 
comment to a literature 
entry in the list of 
literature associated with 
the project. 

 X  

Open the “Literature” view 
when an entry is double 
clicked. 

11 

In the tab “Literature” in 
the “Project” view the 
participants get confused 
about the options under 
the “Add Reference” 
button. 

X  X 

The “Add Reference” 
button should not have 
dropdown options. These 
options should instead be 
represented in the “Add 
Reference” dialog with 
suitable labels. 

 

 

 

 

 

 

 

 

 

 

Table 12.4.: Table showing issues in Project view and possible solutions

Figure 12.4.: This screenshot depicts the Project view ”Add Reference” issue 11.

Issues we have decided not to solve

We have chosen not to implement the low priority issues stated in Figure 12.7 on
page 90. In general these issues are suggestions for improvements that we did not
want to implement either because we did not find it within the scope of the system or
because we did not find the suggestion appropriate.

12.2.1. Discussion

Despite the fact that the system was not completely finished at the time of testing we
consider the test a success. A success in the sense that we became aware of some

88 SCRAML



12.2. ANALYSIS OF RESULTS
Issues related to the Literature view: 

 

 The following 
experienced the 
issue:  

 

Issue 
number

: 
Issue / Cause P1 P2 P3 Possible solution 

12 

In the “Comments” tab 
the participants did not 
understand the meaning 
of the “Details” field. 

X X X 

Rename to “Comment 
title”. 

13 

When clicking the “Year 
of publication” field in the 
“Create a new literature 
entry” dialog with the 
mouse the cursor position 
hinders typing. 

X X  

Correct the error. 

14 

In the “Comments” tab 
the “Create comment” 
and “Submit comment” 
buttons might cause 
confusion. 

X   

When clicking the “Create 
comment” button it could 
be changed to a “Submit 
comment” button, instead 
of having 2 buttons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12.5.: Table showing issues in Literature view and possible solutions

Figure 12.5.: Screenshot of the comments tab in the literature view depicting the ”De-
tails” field issue 12 and the ”Create comment” / ”Submit comment” issue
14.

Figure 12.6.: Screenshot of the ”Create new literature entry” view depicting the ”Year of
publication” issue 13.

Student Catalogue for Reviewing And Managing Literature 89



Chapter 12. Usability test

Issue #: Problem Severity:
1 Cosmetic
2 Cosmetic
3 Cosmetic
4 Cosmetic
5 Serious
6 Cosmetic
7 Cosmetic
8 Serious
9 Serious
10 Cosmetic
11 Serious
12 Serious
13 Cosmetic
14 Cosmetic

Table 12.6.: Classification of usability issues
 

Issues we have decided not to solve: 

 The following 
experienced the 
issue:  

 

Issue 
number

: 
Issue / Cause P1 P2 P3 Reason for not solving this 

problem: 

15 

A participant requested 
further division of “All 
projects” into more 
subcategories such as 
one containing groups. 

  X 

A very interesting idea that 
we have chosen not to 
develop because it is a 
new functionality. 

16 

A participant requested 
the option to see a 
summary for a literature 
entry in the Main view. 

  X 

We do not implement this 
because we do not want 
to present too much 
information in the Main 
view. 

17 

A participant requested 
a reference showing 
where to get hold of 
literature  
(libraries, databases etc.) 

 X  

We do not consider this a 
problem. Besides it is a new 
functionality. 

 

Table 12.7.: Table showing which issues we decided not to deal with

usability issues in the system that we probably would not have encountered otherwise.
We note however that the state of the system and range of participants prevent us from
drawing firm conclusions.

All three participants were first time users of the system and for that reason they
should be suited for helping us test whether the 10 minutes goal (see section 12.1 on
page 80) has been reached.

The test showed that the participants did not experience major problems while navi-
gating the user interface, which they confirmed during the debriefing by characterizing
the user interface as simple and straightforward. However the meaning of the Main view
sidebar categories ”My” and ”All” was a bit unclear but this uncertainty did not lead to
critical problems when solving the exercises. Further more only a smaller number of
issues categorized as serious were identified. This held together with our observation of
the participants using the system seem to suggest that the 10 minutes goal has been
reached.

90 SCRAML



12.2. ANALYSIS OF RESULTS

Concerning the question Is the distribution of information and interplay between the
GUI windows sensible to the participants?, the short answer is yes. All participants
stated during the debriefing that the arrangement seemed fine and logical. The fact
that there are only two options under the toolbar option New. . . and the Edit. . . button
alongside it help increasing the participants’ overview of the system and its ease of use.

One of the most interesting problems is related to the suboptions of the Add Reference
button (issue 11 depicted in figure 12.4 on page 88). The participants found the meaning
of the options ”Review”, ”Suggestion” and ”Reference” unclear. The cause of this problem
is that we have let a part of the model not relevant to the user show through to the user
interface. In system terms a literature object (entry) holds a list of references – thus a
review is associated with a literature entry as a reference. But that is not the way the
user looks at it. From his point of view a review is directly attached to a literature entry.
When he seeks to add a review to a literature entry he most likely does not regard it as
adding a reference as we have set the stage for in the program.

Unfortunately the tag functionality (#5 in figure 12.3 on page 87) was not working
properly on the test day so this otherwise essential part of the program could not be
examined. This would have been an very interesting test to carry out due to the un-
usual nature of the tags; to examine if it makes any sense to outsiders. However the
main features of creating users, projects, literature entries and comments were covered.
Furthermore was project literature referencing and retrieval of stored data touched.

After implementing possible solutions for most of the issues – we find that our system
has a decent level of usability and thus we are of the opinion that our usability test
objectives have been fulfilled.

To expand the test it would be interesting to carry out a test with the following char-
acteristics:

• A more realistic setup outside the lab with more participants interacting with the
system simultaneously.

• More of the system features covered.

• Long-term use – for instance during an entire semester.

Student Catalogue for Reviewing And Managing Literature 91



Part V

Study Report

The study report contains academic reflections and decisions made
during the process. It covers the most important decisions and
subjects of discussion encountered during every part of the pro-
gram development.



CHAPTER

13

Academic reflection

13.1. Project and team management

Our group composition has had an impact on the work process. Some of the group
members had been in a group together before and others knew each other from before
enrolling at the university. Furthermore the group consists of six informatics students
and one computer science student. We think that this mixed composition has been
inspiring. The fact that we have different program design and programming skills has
been a good platform for supporting and learning from each other.

To set up initial guidelines for our work we agreed that it would be reasonable to devise
a ”code of conduct”. Furthermore we decided to use a wiki1 to aid us during the project
period. On this wiki we have put our code of conduct, system definition and other project
related material.

Our overall work organization was primarily based on the suggestions from the courses
offered – more specifically the document standard templates handed out. From these
templates we produced tables for both the analysis and design documents. We lined up
what each section of the report should contain and who were responsible for each part
(see figure 13.1 on the next page).

During this project we had two reviews. The advantage of these – the feedback aside
– was the hard and fast deadlines. In fact we feel that those deadlines ensured that the
amount of work was almost equally distributed over the entire semester.

Problems encountered

We think that the idea of using the wiki was good, because it could be used for preserving
important group discussions and decisions. We were however only using the wiki in
the beginning of the project period. The code of conduct stated that we should have
frequent meetings for discussing individual areas of responsibility, tasks and deadlines.
Furthermore when a group member or a subgroup had finished a task they should
present their work to the rest of the group. Those meetings and presentations were to
a wide extent not carried out. The result was rather unstructured project management
with ad hoc decisions that were not discussed across the entire group.

As mentioned we had planned to hold frequent meetings in the group where we should
have discussed the content of the report and the work that each student is working with.
We never held such a meeting but left these discussions to the free debate in the group
room. We think the reason why these meetings were not held is that non of the group
members were good at taking the initiative for such a meeting.

A split of the group occurred along the way, where one subgroup concentrated on
programming while another worked on the report and the usability testing.

Regarding programming the client/server architecture required us to develop two ap-
plications at the same time. The advantage of this architecture is that it was easy to
split the work into two such that some students were focusing on the server and some
at the client (as described in section 13.5 on page 99).

1A wiki is a web page where all the members easily can add, remove and edit the content.

Student Catalogue for Reviewing And Managing Literature 93



Chapter 13. Academic reflection

Figure 13.1.: An excerpt of the document we used to organize the design document work

The downside of the former division of the group is that one subgroup is highly famil-
iar with one part of the project while another subgroup is highly familiar with another
part. Furthermore did the division of programming tasks lead to a certain level of code
”ownership”.

To conclude: The exchange of information across and internally in the subgroups has
been present but not sufficient. Moreover, while having several advantages particularly
with respect to efficiency the parallel organization of work has the drawback compared to
a sequential approach that things might get anticipated. This can lead to inconsistencies
that are cumbersome to correct afterwards. A solution to this, could have been the use
of more detailed project planning. That could have been a more detailed work schedule
to secure a better overview for all the members in our group. Furthermore there was
some slight problems, because we did not do all the exercises of the SAD. This lead to a
considerable amount of work prior to the reviews, which could have been avoided if we
had worked a bit more with the exercises.

Another issue we have discussed is the ”Code of conduct”, this document was not
detailed enough and it was never revised thorough the process.

Solutions adopted

As we progressed towards the usability test we chose that three members of the group
should focus on the usability test while the rest should continue on the development of
the program. This were done to ensure that the quality of the usability test planning and
to ensure that the program had enough working facilities to actually perform a usability
test.

The tables helped us achieving a better overview of the contents of the report and the
work needed to be commenced. They were tools to keep track of progress by marking
completed parts (according to [6, p. 299]).

Recommendations for the future

We think that it would have been better to carry out frequent group meetings. There-
fore we suggest that we in the future add a criteria to the code of conduct about exact

94 SCRAML



13.2. SYSTEM AND THE DOMAIN

scheduling and agenda format of such meetings. Furthermore a frequently updated
record of report and program changes from each iteration – and the arguments for in-
troducing the changes – would have helped us devising this study report.

Furthermore it will be a good idea in the future to deploy a higher level of structure of
the group work.

13.2. System and the domain

Process followed

The theme of the semester together with the project proposal made up a strong foun-
dation for the project. We did however decide – based on a short analysis of the target
audience – that the system should be using a shared data source for all the project
groups. This server/client approach was chosen in order to let the project groups gain
from other projects dealing with similar topics.

Initially we worked out a stakeholder analysis in order to better understand who our
target audience is. While a part of the group were working on this analysis the remain-
ing part worked on a role model analysis. These two analyses have influenced the entire
project. However only the stakeholder analysis is included in the report. The role model
analysis gave us inspiration for techniques that could be interesting to apply to our sys-
tem. One example could be the use of tags represented in a tag cloud.

We also considered if we should use a web-based system because it – contrary to Win-
dows Forms – has no platform requirements for the clients. Furthermore the clients
would be able to use the system from any computer with access to the Internet without
having to install a program which usually is not possible at for instance a library. Un-
fortunately this solution was not a possible due to the demands of our semester theme.
Therefore both the client and server are developed using C# running on the .NET frame-
work.

The architecture of our system dictates that the usefulness of the program will im-
prove with the amount of users. Optimally the system would be used across different
lines of study. By doing this the students might find relevant literature added by other
students at another study.

Problems encountered

We encountered no problems in this process.

Recommendations for the future

13.3. Analysis

Process followed

The analysis was conducted in accordance with the ”OOA&D”[6] method. This method
was presented in the SAD course in shape of the standard for the analysis document.

Student Catalogue for Reviewing And Managing Literature 95



Chapter 13. Academic reflection

Our starting point for the analysis was to describe the purpose of the system. The first
part of this chapter was the project proposal. With this proposal in mind we devised
an overview with help of the FACTOR (See section 1.2.1 on page 8) with the initial re-
quirements for the system, this resulted in the system definition. The next step was the
stakeholder analysis, that helped us realize who had influence on the system and the
development process.

A recommendation from the SAD was to work with rich pictures in the report to fully
identify the problem domain. The rich pictures in our report is not that detailed com-
pared to what was shown at lectures. However we find the idea behind the pictures very
reasonable but for our system they were not in so much use, because of the overall sim-
ple nature of our system domain. Though if we had been working with a real customer it
would have been an very interesting way to illustrate our/their thoughts for the system.

This lead to the definition of the problem domain, describing what problem should be
solved. After this we were able to start describing the essential parts of the application
domain, where some of the overall classes for our system were found.

Afterwards we made the first class diagram based on the application domain. This
diagram was changed after the first review. The first diagram (see figure 13.2) had a lack
of structure and did not fully comply with the standard in OOA&D. Therefore the final
version (see 2.1 on page 15) of the diagram is quite different compared to the first.

According to the project proposal different users should be able to add literature en-
tries to the system but it could be assumed that only one user is accessing the system
from one computer at a time. We discussed this topic a lot in the beginning of the
project. The program that we were supposed to develop is aimed at project groups at
a university. These project groups are all dealing with the same problem of organizing
and finding literature sources. Based on this fact we concluded that it would be better
if the different project groups were enabled to share what literature they use, such that
groups that work with similar topics can benefit from literature that another group uses.

In order to develop such a system it would be essential that the system is based on a
multiuser platform consisting of clients and a server. The server must be able to handle
multiple clients at once. We all agreed that this would be the most reasonable solution
to satisfy the actors of the application domain. However we had doubts concerning the
complexity of this solution. We decided to design the system using this client/server
architecture because we thought it would be good to learn about handling communica-
tion between different computers and how to handle multiple simultaneous requests at
a server.

Figure 13.2.: The class diagram before the first review

Based on the class diagram we should describe the classes shown in the diagram. The
classes were visualized in state chart diagrams. In the process of creating these we also

96 SCRAML



13.3. ANALYSIS

experienced some problems cause many of the diagrams turned out to be either not de-
tailed enough, incomplete or hard too understand. In figure 13.3 one of the problematic
diagrams shown.

Figure 13.3.: This classdiagram is not detailed enough, in this diagram it is not possible
to delete the project when it is already submitted.

In the diagram for the project class a problem arose that could have lead to a flaw in
the system and misunderstandings between the developer and the customer .
Afterall we consider the statechart diagram as a very useful tool in the development pro-
cess, and we will certainly use them in later projects together with the class diagrams.

The next interesting topic in analysis was the usage of ”personas” (See section 3.1.2 on
page 22) that is fictive descriptions of possible users. The personas was used because
we do not have any real users for the system. The principle about this approach is
to ask yourself ”Would Brian like this button?” while you are developing the system.
Unfortunately we have not used the personas much during the development because
some group members found it very hard to take serious. However we find the main
thought about the personas interesting and with or without any users it could be a way
to develop the system with respect to the users demands.

Problems encountered

Introducing the Reference class At some point in the process we had a class called
LiteratureDescription to connect projects to literature. The idea was to rate how relevant
a piece of literature was to a project. LiteratureDescription was basically what we now
call Review. It was decided that it often not would be necessary to add a piece of text and
a rating to a piece of literature when making a reference to it in the project in question.
Thus the LiteratureDescription class was specialized into the three classes Reference,
Review and Suggestion.

Applying the Role Pattern Early in the analysis process a need for a way to handle in-
formation about people in the problem domain was recognized. A class called Person
was created. Since the system is intended to be used in not only one, but many project
groups at the same time it became clear that the People class was not sufficient. A way
to describe a person’s relation to several groups was needed. This is why we applied the
Role Pattern [6, p. 80] and introduced a Role class with the specializations Member and
Supervisor. The advantage of this construct is that one person can aggregate zero or
more roles simultaneously. He can have the role of member of one group while having
a supervisor role in another. Or he can be member of more than one group. Further-
more Creator is a specialization of Member, since the person who creates a project is
automatically member of said project.

Student Catalogue for Reviewing And Managing Literature 97



Chapter 13. Academic reflection

Delay of Analysis Document Template During lectures the group was informed of a
template for the analysis document. The group expected to receive the template in
appropriate time, but we did not. Therefore we had some doubt whether or not any
material produced by the group would be applicable in the this template, work was
somewhat stunted. This was largely a fault of the teaching staff, since they repeatedly
reminded the groups that the template was coming, but ultimately the template arrived
very late, hastening any work that had to be included.

Experience with OOA&D

OOA&D is well suited for programming tasks where there are few unknowns in the
language and framework being used. Analyzing and designing a program using OOA&D
without prior knowledge of Object Oriented Programming seems far fetched when using
the waterfall model, the OOA&D model specifically specifies iterations, without iterations
the model is even more unrealistic.

Recommendations for the future

The system definition could to a wider extent have been used as reference in the steps
following the initial one, that is, in analysis, design and implementation. Also following
the waterfall model as attempted in this semester is not really recommended. An attempt
to develop some preliminary software to get an idea of the extent of the task at hand is
recommended.

13.4. Design

Process followed

We have used the design standard provided by the SAD and DIEB courses to structure
our design process 2. The different parts described in the standard were delegated to
different subgroups of the project group. We devised the quality goals and factor-table
in the group.

Network communication between clients and server We decided, as mentioned in sec-
tion 13.3 on page 96, to design our system by the use of a client/server architecture.
This decision means that we must implement some kind of network communication. We
decided that the three most obvious solutions would be:

RMI because it is a simple way to implement network communication in a C# program.

Web Service because it is easy to use in other platforms.

HTTP because it would give the user access to the system from any computer with access
to the Internet and a web browser.

We found that the best solution would be to implement all of those solutions in order
to make the system as widely accessible as possible. We did however decide only to
implement the RMI because that were the one which would be the most obvious and
easiest one to implement in C# and because we wanted to minimize the amount of work
to do. By using the RMI it is possible to access classes directly on the remote system.

2a copy of the standards is found in appendix B on page 114

98 SCRAML



13.5. IMPLEMENTATION

If we had decided on using a Web Service we would need to implement a special class
at both the server and client side to handle the communication. If we had used a HTTP
server we would have needed to implement the user interface as a HTTP server and not
by using Windows Forms.

Even though we decided only to implement the RMI, we did decide to implement the
communication between the server and the client as a separate layer in the server such
that it would be easy to add further network communication types to the server.

Search interface To strengthen the applicability of the project, we needed a way to make
it easier for users to find new interesting literature within the system. The Tags are a
crucial part of calculating the relevancy between items in the database. It allows us to
implement the ShowRelevant function on an item, which lists other items in the system
that have the same tags sorted by how many people have added those tags. Users can
then easily browse through relevant literature and the projects that has used them.

It is also possible to do free-text searching, which is implemented using a slightly
modified Term Frequency-Inverse Document Frequency [17] algorithm. This expands the
possibility of finding relevant items within the system.

Problems In this context a problem could be ”meta noise”3 where some users are
adding irrelevant tags to literature and projects. It would be the moderators task to
remove meta polluters from the system. While that solves spammers it does not help
when people make spelling errors in the tags. This problem is more complex to solve,
because it would not be fair to remove users that are bad spellers. Therefore it must be
the job of a moderator to remove spelling errors.

Problems encountered

While developing the factor-table (see table 7.1 on page 42) it was particularly difficult
to assess the impact of the factors on the system architecture and to rate the factors
according to ”Priority for succes” and ”Difficulty or risk”. This was due to the fact that
we are novice system developers and thus do not possess the necessary experience to
perform such assessments. Without knowledge of which parts of implementation are
difficult and what is possible using OOP, designing the actual system is difficult.

13.5. Implementation

Process followed

The implementation process was highly iterative, since unforeseen problems arose as
the programming process progressed. When one suggested solution did not work an
alternative had to be devised. It also began halfway through the design phase, this
was done in an attempt to foresee some of the decisions that needed to be made during
design.

To allow more group members to work on the program at once the AccessHandler
component was defined as one of the first steps of implementation. Because Client-API
provides an object using the IAccessHandler interface, a fake object implementing that
interface could be used instead of a working Client-API component. The interface was
defined and a dummy class containing test data and fixed responses to method calls
was used to allow the Graphical User Interface to be built by one team, while every other
component (except AccessHandler) could be developed by a different team. Later in the

3The posting of irrelevant tags like spam or spelling errors

Student Catalogue for Reviewing And Managing Literature 99



Chapter 13. Academic reflection

process when basic functionality of the other components were completed, the switch
from the dummy object to an actual RMI-Client was hardly noticeable.

Problems encountered

Missing variables Objects like project and literature do not contain enough variables
to describe them to a degree that will be satisfactory for all users. While more effort
could have been allotted to this assignment, it was de-prioritized on the count of not
being relevant to the subjects the group is trying to learn this semester. Deciding which
users use which variables are not directly linked with any of the curricula followed, and
because adding more variables to a class, like semester to Project, is a trivial process
strictly from an OOP point of view it was not deemed important. It is arguably important
for the DIEB course, as an insight into what users would expect of a system. But the
amount of effort required to reach a satisfactory result was deemed too great.

Low Cohesion on AccessHandler and Catalogue Upon finishing up the functions avail-
able on the AccessHandler and Catalogue, it became apparent that Catalogue did indeed
have very low cohesion, it contains functions for changing basically everything in the
Model. This seemed acceptable in the earlier stages of development, but in the end the
sheer size of the Catalogue class makes the program more difficult to understand and
read. Splitting up the Catalogue into several Controllers instead of a single would in-
crease the Cohesion. For example splitting the Catalogue into a Controller for each part
of the DataContainer structure, one for People, one for Projects, one for Literature and
one for Tags. This approach would however cause new problems such as very High cou-
pling between the different Controllers. An example being adding a reference between a
Project and a piece of Literature, this would require a call to both controllers with the
exact same data in this case, who would be the Creator of the actual Reference object.

DataTable for Tags While it was the goal of the group not to delve into relational databases,
implementing Tags, which basically consist entirely of indexes, was implemented using
DataTable. The alternative was using several Dictionaries to solve looking up a Tag by a
project ID and/or a username.

UniquelyIdentifiable During save and load of the model, it was observed that keeping
the cross-references would be invalidated unless it was possible to discern projects and
literature by something other than their data. Thus the superclass UniquelyIdentifiable
was implemented. UniquelyIdentifiable has a variable ID and a static variable NextID.
Upon creation of a new object of a class that implements the UniquelyIdentifiable class,
NextID is ensured to be 1 higher than the highest used ID. The Catalogue object calls
UniquelyIdentifiable.NextID the get the next viable ID for a project or literature when
creating new instances.

Interchangeable Network Model The decision to make the network model interchange-
able caused the program to swell in duplicate commands and information. The reason
being that accessing objects without having a reference to them requires identifying them
with their ID or likewise on each command. If the program was implemented taking only
RMI into account, another more object oriented approach could be used. An idea float-
ing around earlier in the process was giving clients access to a ProjectWrapper class that
handles all operations on a Project while enforcing all the users permissions. This kind

100 SCRAML



13.5. IMPLEMENTATION

of use-case controller is more in the spirit of object oriented programming, where the
implemented solution is very reminiscent of procedural programming.

Custom controls The tag controls have there own internal datastructure and sorting
functions. This is because we wanted to make a control with a very low coupling to the
main program. We have succeed in achieving this, however it means that some functions
in the tag controls are very similar to functions in the main program. The functions for
sorting tag in the main program was made after the tag controls, but because of the very
low coupling the main program can not use this function. If we were to create it again,
we would make the tag control so the input for them was a sorted list of tags and not
as it is: A list of all tags in the system. Than it would be possible for us it use the same
sorting function and datastructur in for instance in the search functions.

For presenting tags on the tag container we wanted to make a small status bar appear
under each keyword. It was not possible to use the progress bar in the windows forms
library because it was too large. So we decide to make our own small progress bar.
This was done using the System.Drawing library. At first it worked great but if the form
lost focus or if the user used the scroll bar the tags would disappear. So we needed to
override the OnPaint event. Because of the way we were drawing the tag the only way to
do this was to redraw all the tags in the container. Normally this is not something the
user would notice, but if the user uses the scroll bar the tags start flashing especially if
there is a lot of tags in the container. This problem could have been solved by making
the tags themselves a custom control, which would then be instantiated inside the tag
container. And instead of drawing the status bar we would have used a picture box with
a image of the status bar at 100%. Then we would hide part of the image with a label if
the tag weight was not at 100%.

A general problem with all our controls is that sometimes there can be problems prob-
lems with the designer in Visual studio. The problem is that the designer cannot be
displayed. This happens if something is changed in the custom control and the custom
control is not compiled. It can also be caused by the custom control’s properties acting
weird or just what seems randomly with no specific cause.

13.5.1. Data storage

Since our system is based on a server, which is going to catalogue and search for infor-
mation about literature sources as instructed by the clients it would have been an obvi-
ous solution to use a database server for the storage. Another option that we discussed
was to use XML for the storage. The disadvantage by using XML is that it requires that
all the data must be loaded into the system memory on the server. This will of course
induce the demands for system memory on the server as the system grows.

Despite the fact that XML-files have high system requirements on the server we chose
to use XML in order to use what we had learned about it in the OOP course. During
the implementation of the system we however discovered that the use of XML was rather
slow and not easy to use in our system. Therefore we decided to use binary files for
the storage. In order to accommodate the possibility of changing the data storage we
decided to keep the data storage in a separate layer such that it would be easy to switch
to another data storage implementation such as the use of a database server.

Student Catalogue for Reviewing And Managing Literature 101



Chapter 13. Academic reflection

13.6. Unit testing

Process followed

We started coding the classes for black box testing the PersistentData and Catalogue
pretty early in the project phase. The test classes was rewritten a few times before the
actual program was finished. After finishing the program the test classes was updated
once again.

The white box testing of the Search() algorithm was done at the end of the project
phase.

Problems encountered

In generel we found more errors in our own tests than in the actual program. We did en-
counter some logical errors in the Catalogue in the further development of the program.
In theory these errors should have been discovered earlier in the black box unit testing.
We did however find several flaws in the Catalogue class. These flaws was mostly related
to typing errors caused by copy/pasting which obviously can lead to logical errors.

Due to large structural changes in some of the classes the CatalogueTest class had to
be rewriten a couple of times.

Recommendations for the future

Unless an agile style of programming is used, e.g. Extreme Programming[16] the testing
classes should first be written after all structural issues has been cleared.

The process of making a white box test of an algorithm was interesting but would
properly quickly get incalculable if applied to any larger part of a program.

13.7. Usability testing

Process followed

The first thing we did before the test was to find the different participants for the test.
We aimed at having four people for the test and the optimal profile for a participant was
centered around the following:

• A person who is studying at Aalborg University due to the large projects we do.

• A person who had not followed the usability-lectures with objectivity in mind.

• Different people with different levels of computer-experience.

• A person that have no personal connections with any members in our group.

Initially we discussed how many participants we needed for the test and we agreed
that the optimal would be 3 or 4 people.

At first we made an appointment with a four-people project group from humanistics
but due to their project work they bailed out a couple of weeks before our test. Therefore
we had to find four new participants. In the end we had appointments with two students
from computer engineering and two people who recently abandoned our study.

We did the usability test in the usability lab at the university. To handle the test we
were three people in the lab – one test monitor, a technician and an observer. The role

102 SCRAML



13.7. USABILITY TESTING

of the test monitor was to manage the test (see A.3 on page 108). The same monitor
was used in all the tests to ensure that the three tests was carried out in identical en-
vironments/situations. Furthermore he should prevent the test participant from using
non-functional parts of the system. The technician was controlling the cameras and the
DVD-Recorder. The task of the observer was to act as a buffer by writing notes about
aspects of the test situation that the video recording would not necessarily catch.

Before the actual test we initially accomplished a dummy-test. In this test a member
from our group acted as a test-participant. This was done to examine if it was possible
to carry out the tasks for the test and to make sure that the recording-equipment was
functioning correct. Then the three actual tests was executed.

Afterwards we examined the recordings of the tests and took note of the various issues
that were found. Then we analysed these issues and categorized them by their respective
windows. Then we tried to make possible solutions to the issues by analysing the results
with the test participants comments in mind.

Problems encountered

The main problem we had about the test was the fact that it was hard for us to find
appropriate participants. The group from humanistics cancelled our appointment and
therefore we had to find new test participants within short time.

The next problem we encountered the day of the test was the fact that one of the
test participant did not show up and that another participant cancelled his appointment
with us. We agreed that we had to have at least three participants so we had to find a
new person very fast. The person that we found did not fit the optimal profile for our
participants very well because he already knew a lot about usability. But we figured that
it would be better to have a participant that did not fit the profile that well than having
no test. Therefore our solution was to use a guy from another informatics-group for the
test.

In the second test we knew the participant to well. During the test the participant
talked a lot and we got the impression that he wanted to please us.

While evaluating the test results we realized that the tasks had some smaller issues.
For example we discovered that the data that the participants were to add to the system
were insufficient. If we should have avoided this problem the expected solutions in
appendix A.5 on page 112 should have been written prior to the execution of the test.

Solutions adopted

We choosed to find new participants, when the group from humanistics cancelled our
appointment.

Recommendations for the future

• Not to use participants from our own line of study or from our own social circle, to
get more objective answers.

• To start the test-planning earlier in the process.

• Eventually carry out two usability tests, one when we have a functioning prototype
of the system and another in the final phase of the development-process.

• To do possible solutions for the usabilty-tasks prior to the test.

• To do a test with a larger number of participants.

Student Catalogue for Reviewing And Managing Literature 103



Chapter 13. Academic reflection

13.8. Conclusion

Our encounter with the object oriented approach to programming has been an educa-
tional and interesting experience. Though the decision to work with an interchangeable
network architecture proved difficult to implement using the object oriented paradigm,
we have found the method to be a powerful and pleasant approach to system develop-
ment. Deploying the methods described in our OOA&D textbooks we have acquired a
decent amount of useful tools that will aid us in future projects.

As expected the usage of the waterfall model resulted in discrepancies between anal-
ysis, design and implementation. Had we followed the model to the letter we should
have rolled back to the point where the discrepancies initially manifested increasing the
workload. This is simply not possible especially in a project such as ours with rather
limited resources. Therefore it might have been preferable to use an iterative approach
as recommended in the textbooks. This however was not an option due to the courses’
linear presentation of the material.

The GUI was developed using an iterative approach which forced us to revisit crucial
parts of the UI design. One major revision was in part caused by the results of the
usability test which highlighted several issues in the design. Optimally the usability
test should have been carried out as the last step of the process because parts of the
system were incomplete at the time of testing. However at the end of the project period
these parts were all complete – including all non-trivial parts – and we have covered the
spectrum of features in object oriented programming that we find interesting.

104 SCRAML



BIBLIOGRAPHY

[1] Askoxford.com, 2006. http://www.askoxford.com/. 9

[2] Kurt Nørmark AAU. Slides about oop. http://oldwww.cs.aau.dk/
ñormark/oop-06/html/oop.html (18.12.06). 77

[3] Dylan Lake David Latapie et al. Wikipedia on wiki.
http://en.wikipedia.org/w/index.php?title=Wiki&oldid=79419119. 120

[4] Tim Chambers Denham Grey et al. Folksonomy, revision 78202657.
http://en.wikipedia.org/w/index.php?title=Folksonomy&oldid=78202657.
44, 120

[5] Yvonne Rogers Jennifer Preece and Helen Sharp. Interaction design – beyond
human-computer interaction. John Wiley & Son, Inc., 2002. 31

[6] Peter Axel Nielsen Lars Mathiassen, Andreas Munk-Madsen and Jan Stage. Object
oriented analysis & design. Marko Publishing, 2000. 3, 8, 12, 37, 41, 94, 95, 97

[7] Microsoft. C# and .net. http://msdn.microsoft.com/library/default
.asp?url=/library/en-us/netstart/html/cpcsvbvcjscript c .asp
(29.10.06). 9

[8] Microsoft. C# requirements. http://msdn.microsoft.com/library/de
fault.asp?url=/library/en-us/cpguide/html/cpconnetframeworksystemrequ
irements.asp (29.10.06). 40

[9] Microsoft. .net framework version 2.0 redistributable package (x86).
http://www.microsoft.com/downloads/details.aspx?FamilyID=0856eacb-436
2-4b0d-8edd-aab15c5e04f5&displaylang=en#Requirements (29.10.06). 33

[10] Rolf Molich. Brugervenligt Webdesign. Ingeniøren bøger, Ingeniøren A/S, 2003. 85

[11] Joseph Poole. Basic path testing. http://hissa.nist.gov/basicpathtest/
(15.12.06). 76

[12] Jeffrey Rubin. Handbook Of Usability Testing. John Wiley & Sons, Inc, 1994. 80,
81, 84

[13] Jan Stage. Forms of interaction. 32

[14] Thomas Vander Wal. Folksonomy :: Off the top.
http://www.vanderwal.net/random/category.php?cat=153. 44, 120, 121

[15] Wikipedia. Cyclomatic complexity. http://en.wikipedia.org/w/index.php?
title=Cyclomatic complexity&oldid=93806810 (15.12.06). 76, 77

[16] Wikipedia. Extreme programming. http://en.wikipedia.org/w/
index.php?title=Extreme Programming
&oldid=93935539 (19.12.06). 102

[17] Wikipedia. Term frequency-inverse document frequency.
http://en.wikipedia.org/w/index.php?title=Tf%E2%80%93idf
&oldid=90045948 (16.12.06). 67, 99

Student Catalogue for Reviewing And Managing Literature 105



Part VI

Appendix



APPENDIX

A

Usability test

A.1. Test documents

Handouts for test participants

Person profile

Name:

Age:

Semester:

Present study:

Declaration of consent

I hereby allow that group d103a is allowed to use video recordings from this test for
further analysis and for the exam.

Name and date:

Signature:

A.2. Test introduction

In the beginning of each test the following Danish text will be read aloud to the test par-
ticipants. This is done to ensure that the participant knows the course and framework
of the test. Below this Danish text we have made a translation of the text into English.

Først og fremmest: tak fordi du ville være med. Du skal hjælpe os med at teste det
litteraturhåndteringsprogram, vi har udviklet. Testen kommer til at foregå på den måde,
at du sidder ved computeren med programmet. Jeg vil sidde ved siden af dig under hele
testforløbet. I de tilstødende lokaler sidder der personer og observerer det, der foregår.
Selvom det kan virke som en eksamenssituation skal du tage forsøge at tage det roligt og
koncentrere dig om at løse de stillede opgaver. Husk på, at det er programmet og ikke dig
vi tester. Du vil få udleveret opgaverne én af gangen, og jeg bede dig om at læse opgaven
højt før du starter på at løse den, så vi sikrer os, at du forstår, hvad vi ønsker at du skal
gøre. Ligeledes vil jeg vil bede dig om at fortælle mig, når du mener at have afsluttet en
opgave. Undervejs vil jeg bede dig om at tænke højt. Det vil sige, at fortælle mig om dine
overvejelser, løsningsstrategier og forventninger. Jeg vil ikke hjælpe dig direkte, eftersom
det ikke er meningen med testen. I stedet vil jeg forsøge at stille dig spørgsmål, så du selv
kan nå frem til en løsning. Desuden skal du også sige til, hvis du føler du støder ind i
problemer eller er usikker på hvad du skal gøre. Hvis du på et tidspunkt kører fast, og
ikke kan nå frem til en løsning, vil jeg bede dig om at sige til. Så går vi bare videre til næste

Student Catalogue for Reviewing And Managing Literature 107



Appendix A. Usability test

opgave. Efter opgaverne har vi en række spørgsmål, for blandt andet at undersøge, hvad
du overordnet mener om programmets funktionalitet og udformningen af dets brugerflade.

English translation

At first: thank you for participating. You are supposed to help testing the literature man-
agement system that we have developed. During the test you are situated in front of the
computer with the program running. I will be sitting right next to you during the entire test.
Observers are situated in the adjacent rooms. Even if it might feel like an examination you
should try to relax and concentrate on solving the tasks. Remember that it is the program
and not you we are testing. You receive the tasks one at a time and I will ask you to
read it aloud before trying to solve the task such that we can be sure that you understand
what we want you to do. Furthermore I request you to tell me when you think you have
completed a task. During the test I ask you to think aloud. This means that you should tell
me about your considerations, strategy for solving the problems and expectations. I will
not help you directly since that is not the purpose of this test. Instead I will try to ask you
questions such that you can find a solution by yourself. In addition you should tell me if
you feel that you get problems or are uncertain about what to do. If you at a time get stuck
and cannot find a solution I ask you to let me know. If that happens we just proceed with
the next task. When all the tasks are completed we have some final questions in order to
uncover what you in general think about the functionality and arrangement of the program
user interface.

A.3. Tasks for the usability test

In the following we will develop the tasks that our participants in the usability test
must solve. We will first describe the tasks using task tables followed by short task
descriptions which are templates to the exercises that the participants will be introduced
to.

Task: Create new user

Task Compo-
nent

Description

Task Create new user and login
Machine State Login window
Successful
Completion
Criteria

The test participant creates a new
user with a username and password
and finally logs in to the system

Benchmark Successful login within 2 minutes

Table A.1.: Create new user

The task

• Create your own user account

• Login with the new username and password

108 SCRAML



A.3. TASKS FOR THE USABILITY TEST

Task: Create new project and add users to this project

Task Compo-
nent

Description

Task Create new project with keywords
Machine State Main window
Successful
Completion
Criteria

The test participant creates a new
project with custom data and the
project becomes viewable in ”My
projects”

Benchmark This task should be completed within
4 minutes

Table A.2.: Create new project

Task Compo-
nent

Description

Task Add 2 users to a project
Machine State Main Window and several preentered

entries
Successful
Completion
Criteria

The project and the 2 users is present
on the screen

Benchmark This task should be completed within
1 minute

Table A.3.: Add users to the project

The task

• Create your own project.

• Add the following users to your project: ”john82” & ”gitte pj”

Task: Create new literature entry

Task Compo-
nent

Description

Task Create new literature entry
Machine State Main window
Successful
Completion
Criteria

The test participant creates a new lit-
erature entry with custom data and
the literature becomes viewable in
”My literature”

Benchmark This task should be completed within
2 minutes, since no summary has to
be entered

Table A.4.: Create New Literature Entry

Student Catalogue for Reviewing And Managing Literature 109



Appendix A. Usability test

Task Compo-
nent

Description

Task Add literature to existing project
Machine State Main Window with several entries in

the database
Successful
Completion
Criteria

The literature has been added to the
project and can be viewed in the list
of literature for the specific project

Benchmark This task should be completed within
1 minute

Table A.5.: Add literature to existing project

The task

• Add the following book to the system:

Netværksbogen
Mølgaard og Nielsen
IDG, 2002

• Associate the book with your project.

Task: Find literature entry

Task Compo-
nent

Description

Task Find the most used tag for a particu-
lar literature

Machine State Main Window with several preentered
literature entries

Successful
Completion
Criteria

The user finds the tag cloud/rating
and a specified tag

Benchmark This task should be completed within
2 minutes.

Table A.6.: Find most used tag for a literature entry

The task

• Find a book using the keyword ”Usability testing”. The correct answer is:

Handbook of usability testing
Jeffrey Rubin
1994
John Wiley & Sons, Inc.

Task: Add comment

110 SCRAML



A.4. EXERCISES FOR THE USABILITY TEST

Task Compo-
nent

Description

Task Comment on a specific literature en-
try

Machine State Main Window with several preentered
entries

Successful
Completion
Criteria

The participant comments on the
specified literature entry and the new
comment is viewable afterwards

Benchmark This task should be completed within
2 minutes.

Table A.7.: Add a comment literature entry

The task

• Add a comment to a specified literature entry

A.4. Exercises for the usability test

Below are the exercises that we handed the test participants during the test. The exer-
cises are written in Danish but are presented in English in section 12.1 on page 82.

Opgave 1

Forestil dig at du som studerende gerne vil gøre brug af litteraturprogrammet. Opret dig
selv som bruger (Med dit fornavn som brugernavn og et password efter eget valg) og log
ind i programmet.

Opgave 2

Din gruppe har bedt dig om at oprette jeres projekt med titlen ”IT i Aalborg” i program-
met. Følgende tags (nøgleord) skal knyttes til projektet Aalborg, IT, computer, usability og
KMD. Ligeledes skal dine to gruppekammerater ”john82” og ”gitte pj” knyttes til projek-
tet.

Opgave 3

I har fundet en bog, som er relevant for jeres projekt. Opret denne bog i systemet med
følgende informationer:

Titel: Netværksbogen
Forfattere: Mølgaard og Nielsen
Publikationsår: 2002
Kilde: IDG

Dernæst skal du sikre dig, at bogen er tilknyttet jeres projekt ”IT i Aalborg”.

Student Catalogue for Reviewing And Managing Literature 111



Appendix A. Usability test

Opgave 4

Jeres vejleder har anbefalet en bog til jeres projekt, men kan imidlertid kun huske, at
den er oprettet i programmet og at den handlede om ”usability testing”. Hvad er denne
bogs fulde titel?

Opgave 5

Du vil nu tilføje en kort kommentar til bogen Handbook Of Usability Testing af Jeffrey
Rubin, som du skulle finde titlen på i sidste opgave. Kommentarens ordlyd skal være:
”Bogen er god, fordi den indgående behandler aspekterne af en test”.

A.5. Expected solutions to the exercises

In the following section we have developed expected solutions to the exercises given to
the participants in order to ensure the quality of the exercises.

Expected solution for exercise 1

Prior to this exercise the program has been started and shows the login form. To solve
this exercise Brian clicks the ”Create New User...” label. In the following form Brian
types in his name: ”Brian Jensen”. In the next field which is ”Department” he types:
”Computer Science” and as an e-mail address he types: ”brian84@hotmail.com” in the
corresponding field. In the ”Username:” field he types ”brian84” because he wants to
use the same user name as he is using for his e-mail. In the last two fields Brian types
”fido” which is the name of his dog in the ”Password” fields. Afterwards Brian pushes
the ”Create User” button. The program informs: ”User was created!” and returns to the
Login form. Brian quickly types in the user name ”brian84” and his password ”fido”
that created before. Finally Brian clicks the ”Log in” button which makes the program
proceed to the Main window.

Expected solution for exercise 2

Brian realizes that there is a button with the text ”New...” and therefore decides to click
this button. As he does this the program gives him two options: ”Project” and ”Litera-
ture”. Brian therefore clicks on the ”Project” option because he wants to create a new
project as he was asked to in the exercise. This makes the program show the ”Project”
form. After a short glance at the new form Brian types ”IT i Aalborg” in the ”Title” field
followed by ”IT” in the ”Subject” field and ”Computer Science” in the ”Department” field.
Brian afterwards clicks the ”Save and close” button in order to save the project. This
makes the program store the project and jump to the ”My - Projects” view and show the
project that Brian has entered in the list. Brian chooses to double click the project that
he created before and sees that he can click on the tab ”People”. In this tab Brian clicks
the ”Add member...” button which brings him a new form in which he can see all the
available users in the system. Brian then browses the list and finds ”gitte pj” and clicks
the ”Add member” button which makes the program return to the people tab where
the newly added member appears. Afterwards Brian repeats the procedure for the user
”john82” and finishes the exercise by clicking the ”Save and close” button.

112 SCRAML



A.6. DEBRIEFING QUESTIONS FOR THE USABILITY TEST

Expected solution for exercise 3

Brian starts by clicking the ”New...” button that he used earlier in the project creation
and instead chooses ”Literature”. The program shows the ”Create a new literature en-
try” form. Brian fill ”Netværksbogen” in the ”Title” field, ”Mølgaard og Nielsen” in the
”Author(s)” field, ”2002” in the ”Year of publication” field and ”IDG” in the Source field.
Brian was not provided with a ISBN number or a summary so he simply leave these
fields empty. Then Brian Click the ”Create Literature” button which make the program
return to the main window and switch to the ”My – Literature” view showing the newly
created book in the list. Brian then double clicks the new entry and the program shows
the ”Literature entry” form. Brian chooses to click the ”References” tab. In this tab
Brian clicks the ”Create Reference” button and chooses the ”IT i Aalborg” project that he
created earlier and finally clicks the ”Save and Close” button to save the changes.

Expected solution for exercise 4

After a short glance at the user interface Brian sees that the main window has a search
field in the upper right corner. Brian quickly enters ”usability testing” in this search
field and the program returns one result showing a book with the title: ”Handbook Of
Usability Testing” which Brian Claims is the title of the book that the supervisor wanted
to suggest the group.

Expected solution for exercise 5

Brian double click on the book he found in the last exercise which make the program
show the ”Literature entry” form with detailed information about the book. Brian sees
that the book has a ”Comments” tab which he then clicks. In this new tab Brian sees
that there is a button called ”Create Comment” which he then clicks. By clicking this
button the program makes the two fields for ”Details:” and ”Comment Text:” available
together with a new button called ”Submit comment”. Brian realizes that he must write
some kind of a comment title in the ”Details” field and therefore write ”Good book” in the
”Details:” field, and proceeds by entering: ”The book is good because it treats the aspects
of a test intensively” in the ”Comment Text” field. Brian then clicks the ”Submit comment”
button to store the comment. Finally he clicks the ”Save and close” button and claims
that the exercise is completed.

A.6. Debriefing questions for the usability test

1. Hvad husker du bedst fra testen?

2. Hvad synes du om brugerfladen?

3. Hvad synes du om organiseringen af informationen på de forskellige skærmbilleder?

4. Hvordan var det at finde rundt i programmet?

5. Var der noget der generede dig ved programmet?

6. Føler du at der mangler noget i programmet?

7. Hvad fandt du godt ved programmet?

8. Ville du kunne se en nytte i dette system på dit eget studie?

Student Catalogue for Reviewing And Managing Literature 113



APPENDIX

B

Analysis and design standards

On the following pages can be found the analysis and design standard documents that
were handed out during the semester.

114 SCRAML



Analysedokument: Standard 
 
Denne standard er en modificeret version af standarden i OOA&D-bogen, kapitel 16.2. 
 
Opgaven. Kortfattet beskrivelse af dokumentets baggrund og sammenhæng med det 
formål at formidle overblik til reviewer. 

1) Formål. Den overordnede hensigt med systemudviklingsprojektet. 
2) Systemdefinition. Sammenfatning af IT-systemets helhedsegenskaber. Jævnfør 

BATOFF-kriteriet i afsnit 2.7. 
Brug stakeholders til uddybning af elementet anvendelsesområde. 

3) Omgivelser. Beskrivelse af relevante forhold i omgivelserne. Kan blandt andet 
kan omfatte rige billeder. Se afsnit 2.3. 

4) Problemområde. Uformel og kortfattet fremstilling af centrale fænomener i 
systemets problemområde. 

5) Anvendelsesområde. Uformel og kortfattet fremstilling af aktører og 
arbejdsopgaver. 

 
Problemområdet. Beskrivelse af klasser, struktur og dynamik. Se del II. 

1) Klynger. Klyngestruktur. Se afsnit 4.2. Giver et overblik over klassediagrammets 
grund opbygning. 

2) Struktur. Klassediagram omfattende generaliserings-, aggregerings- og associe-
ringsstrukturer. Se kapitel 4. 

3) Klasser. Klasserne beskrives enkeltvis. For hver klasse beskrives: 
Definition. Kortfattet karakteristik af klassens objekter. 
Adfærdsmønster. For eksempel beskrevet med et kommenteret 
tilstandsdiagram. Se afsnit 5.2. 

4) Hændelser. Hændelsestabel samt sekvensdiagrammer for relevante fælles 
hændelser. Se kapitel 3. 

 
Anvendelsesområdet. Samlet beskrivelse af brug, funktioner, grænseflader samt andre 
krav til IT-systemet. Se del III. 
1) Brug. Beskrivelse af systemets samspil med omgivelserne. Se kapitel 6. 

a) Oversigt. Aktørtabel, der viser, hvilke aktører og brugsmønstre interaktionen 
består af. 

b) Aktører. Aktørspecifikationer for alle aktører. 
Brug personas til uddybende beskrivelse af en eller flere aktører. 

c) Scenarier. Overordnet beskrivelse af systemets faciliteter og brug. 
d) Brugsmønstre. Brugsmønsterspecifikationer eller tilstandsdiagrammer for 

brugsmønstre. 
2) Funktioner. Beskrivelse af edb-systemets funktionalitet. Se kapitel 7. 

a) Komplet funktionsliste. Liste af funktioner med funktionstype og komplek-
sitetsvurdering for hver funktion. 

b) Specifikation af funktioner. Komplekse funktioner specificeret i relevant detalje. 
3) Brugergrænsefladen. Sammenhængende fremstilling af centrale krav til IT-syste-

mets brugergrænseflade. Se kapitel 8. 



a) Mål for brug. Prioriteringsskema med mål i forhold til brugbarhed (usability) og 
brugeroplevelse (user experience). 

b) Begrebsmæssig model. Karakteristik af den grundlæggende form hvorunder 
brugeren interagerer med systemet. Kan udtrykkes i forhold til aktiviteter eller 
objekter. 

c) Interaktionsform. Beskrivelse af den eller de interaktionsformer, som forventes 
anvendt brugergrænsefladens elementer. 

d) Generel interaktionsmodel. En komplet oversigt over interaktionsrum for hele 
brugergrænsefladen og de opgaver, der hører til hvert interaktionsrum. 

e) Den tekniske platform. Skitse af den tekniske platform og grænseflader til andre 
IT-systemer og apparater. 

 
Anbefalinger. Argumentation for det videre udviklingsarbejde. 

1. IT-systemets nytte og realiserbarhed. En vurdering af kravenes relation til omgi-
velserne og de tekniske muligheder. 

 
Strategi. Anbefalet strategi for det videre udviklingsarbejde. 
 
Udviklingsøkonomi. Estimat af ressource- og tidsforbrug ved det videre udviklings-
arbejde. 
 



d. 26.10.2005/gtj  version 2 

English version 

Standard for design document for 2. review: 
 
The standard is based on ”skabelon for et designdokument” p. 298  chapter 16 (OOA&D). There are 
though some changes: 
 
Chapter 1 and Chapter 2 are the same. 
 
The Chapter 3 architecture is changes to 
3.1 Design criteria and requirements crucial for the architecture 
3.2 Generic design decisions 
3.3 Componente architecture (as 3.1 in the book) 
3.4 Exemplary design (the design of at least one – better two use cases)  
 
Chapter 4 Components are changed with regards to the userinterface.  
4.3. Userinterface component 
4.3.1. Presentation model 
 This paragraph shows the class diagram with all interaction spaces (classes) of the user 
 interface component. Each class is described in the diagram with input and output attributes 
 and actions.  
4.3.2. Interaktion spaces (classes) 
 This paragraph contains a description of each of the interaction spaces not contained in any 
 other interaction space – often a window. The description contains: 

• Interaction form 
• A drawing of the physical design 
• Reference to the use-cases, that they are used in 

 
All other components are described as suggested in the chapter 16. .  
In the component paragraphs the interfaces to other components should be described. The chapter 
will serve as a summery for the design work carried out until the review. 
 
Chapter 5 can be omitted or included. 
 
A new Chapter 6. Programming should demonstrate for the reader that the architecture could be 
implemented by illustrating the implementation of the exemplary use cases. The group should 
include parts of the code, to make it possible to comment on how well design and implementation 
fit each other.  

The amount of material for 2. review: 
In chapter 1 and 2 we expect a description with the scope of all the system.  
In chapter 3, 4 and 6 we expect the description to cover at least the design decisions necessary for at 
least one non-trivial use case, but more is very welcome. 
 
 
 



APPENDIX

C

Technical Memos

C.1. Passing data from server to client

Summary Passing a reference to the original Project object is BAD because the client can
then bypass the Accesshandler when changing stuff.

Factors Security or something

Solution Creating a struct which contains the id and title of the project.

Motivation Better security

Unsolved problems none

Alternatives ... Profit?

C.2. Using a DataTable structure for storing Tags

Summary Reperesenting a tag in the model is problematic. It has to support lookup
using a uniqueid, a username or the tag name.

Factors Persistent Data, Effeciency

Solution Using DataTable class from System.Data

Motivation DataTable is designed to store data. It represents a relational table as used
in database management systems. DataTable has the functionality we seek using
minimum amount of data representation.

Unsolved problems DataTable is a part of the Database implementation in .NET which,
in this project, is not used elsewhere.

Alternatives Implementing 3 different dictionaries containing ids, usernames and tag-
names and allowing lookup that way.

C.3. Saving DateTime using XML

Summary DateTime.ToString() does not represent the precision of the actual DateTime
object thus equals FAILS!

Factors FRUSTRATION!

Solution use DateTime.ToFileTime() and recover using DateTime.FromFileTime(long);

Motivation AVOID FRUSTRATION!

Unsolved problems none plz

Alternatives Override DateTime and fix the ToString()

118 SCRAML



C.4. ERROR HANDLING IN PERSISTANT DATA

C.4. Error Handling in Persistant Data

Summary Whether or not the Persistant data storage returns an error message or throws
an exception on error.

Factors Error Handling & Persistant Data

Solution Using Exceptions on the persistant data layer.

Motivation Because any error on the persistant data is Fatal. The Persistant data should
handle the errors and if it cant the program throws an exception.

Unsolved problems Preventing said exceptions.

Alternatives Using an error message and ignore that the program is unable to save for a
while (or ever?)

C.5. UniquelyIdentifiable

Summary Project class and literature class needs to be uniquely identifiable.

Factors Persistent Data

Solution Adding a new static variable to Project and Literature classes.

Motivation Trouble with comparering objects after sending them over network.

Unsolved problems None

Alternatives None

C.6. XML

Summary We have chosen not to use the C# build-in XML Serializer.

Factors Persistens on files

Solution Use some alternative C# XML-classes, eg. XmlWriter/XmlReader and Xpath for
traversing.

Motivation The build-in C# XmlSerializer cannot be used on objects without a parame-
terless contructor. That means we should change our overall structure.

Unsolved problems None

Alternatives Do not use XML at all.

Student Catalogue for Reviewing And Managing Literature 119



APPENDIX

D

Role model analysis of del.icio.us

del.icio.us is ”a social bookmarking website”1, which means that it is a place where
everybody is free to submit bookmarks to, and let everybody else look at them. This is
nothing new, a lot of places will let you do this. What is so interesting to a literature
management system such as the one this project attempts to create is the organisation
of these bookmarks. This is done through a folksonomic[4] system and presented to the
user as shown in figure D.1.

In the figure all the terms are listed alphabetically, and you will notice that some of
the terms are considerably larger than others (for example ”blog” and web2.0” are much
larger than ”game” and ”sex”). This indicates that those terms are more popular to the
users of this particular community.

D.1. Folksonomy

Folksonomy is a term first used by Thomas Vander Wal[14], who created the word from
the two terms ”folk” (old English word meaning people) and ”taxonomy” (Greek word
meaning classification management) to describe a phenomenon that had developed on
the web, for example in a project undertaken by the World Wide Web Consortium, called
Annotea. Here, information is organised not in a tree structure (a simple menu struc-
ture, as used in many web shops and personal and corporate websites) or as a mindmap
(the wiki[3] paradigm), but in a structure defined by the users of that information by
way of tags.

The idea is to let each user (identity) assign tags (metadata) to pieces of information
(objects), using a vocabulary common to the group to which the user belongs (commu-
nity). See also figure D.2 on the next page for a graphical description of the connections.
The importance of a single tag to a single piece of information is defined by how many

1http://del.icio.us/about

Figure D.1.: The del.icio.us tag cloud

120 SCRAML



D.2. ITEM RELEVANCE

Figure D.2.: The Dual Folksonomy Triad ([14])

users decide to assign that tag to the information, and the importance of a single tag is
similarly defined by how many times it has been assigned to something.

D.2. Item relevance

The tag cloud, however, is not the only representation of the information. Each piece
of information has a representation of its own, where tags relevant to it can be found.
In the case of del.icio.us the tags in these listings are shown in order of importance in
these listings, as shown in figure D.3 on the following page. The first image in the figure
shows the default view, which presents the user with those items that have been tagged
(saved in del.icio.us terms) last, while the second shows the view of the most popular
items with the same tag (in this case ”news”).

D.3. Relevance

The relevance to a system such as ours is, that organizing such large amounts of data
as a literature database, and more importantly navigating it and discovering new infor-
mation in that database, can become difficult if you have no clear way of finding it, other
than searching through clear text. If you have to think the terms up yourself, you might
miss something that others have thought of.

D.4. iTunes

Student Catalogue for Reviewing And Managing Literature 121



Appendix D. Role model analysis of del.icio.us

Figure D.3.: Tag presentation on del.icio.us

122 SCRAML



D.4. ITUNES

Figure D.4.: The Apple iTunes interface.

Student Catalogue for Reviewing And Managing Literature 123


	I Analysis
	The Task
	Purpose
	System Definition
	FACTOR
	Stakeholder analysis

	Context
	The current situation
	Rich pictures

	Problem Domain
	Application domain

	Problem domain
	Classes
	Description of classes
	Events


	Application domain
	Usage
	Overview
	Actors
	Scenarios
	Use cases

	Functions
	Complete list of functions
	Specification of complex functions

	User interface
	Usage aims
	Conceptual model and forms of interaction
	General interaction model
	Technical platform


	Strategy for Future Development
	Economy


	II Design
	The Task
	Purpose
	Corrections to the Analysis
	Quality Goals

	Technical Platform
	Equipment
	System Software
	System Interfaces
	Design Language

	Architecture
	Design criteria and requirements crucial for the architecture
	Generic design decisions
	Component Architecture
	Exemplary Design
	Register user sequence diagram
	Login sequence diagram
	Create project sequence diagram


	Components
	General Overview
	Descriptions of Components
	PersistentData Component
	Catalogue Component
	AccessHandler Component
	Server-API Component
	Client-API Component
	The Graphical User Interface Component

	Interaction spaces
	Create user dialogue
	The Literature entry window
	Presentation model


	Programming
	Programming
	Program execution
	GUI: CreateNewUserForm
	The AccessHandler
	Catalogue
	PersistentData: XMLHandler



	III Implementation
	Implementation
	Environment
	Implementation vs. Design
	The GUI
	The Main Window:
	Project View:
	Literature View:
	Custom Controls



	IV Test
	Unit tests
	Blackbox testing
	Whitebox testing

	Usability test
	Plan for the usability test
	Analysis of results
	Discussion



	V Study Report
	Academic reflection
	Project and team management
	System and the domain
	Analysis
	Design
	Implementation
	Data storage

	Unit testing
	Usability testing
	Conclusion


	VI Appendix
	Usability test
	Test documents
	Test introduction
	Tasks for the usability test
	Exercises for the usability test
	Expected solutions to the exercises
	Debriefing questions for the usability test

	Analysis and design standards
	Technical Memos
	Passing data from server to client
	Using a DataTable structure for storing Tags
	Saving DateTime using XML
	Error Handling in Persistant Data
	UniquelyIdentifiable
	XML

	Role model analysis of del.icio.us
	Folksonomy
	Item relevance
	Relevance
	iTunes



