

.

Department of Computer Science
Selma Lagerløfs Vej 300
DK-9220 Aalborg Ø
Telephone (+45) 9635 8080
http://www.cs.aau.dk

Title:
Creating The ORZAM Game Using EGGS and BACON

Project theme:
Game Development and Game Engine
Programming

Project period:
Fall Semester 2008,
2th September to 19th December.

Project group:
sp1e082

Participants:
Jan Jensen
Jacob Korsgaard
Jørgen Ulrik Balslev Krag
Bo Lind Jensen
Dan Jensen

Supervisor:
Bjørn Haagensen

Print run:
7

Pages:
105

Abstract:

To learn about game engines, we designed a
game and built an engine and level editor for that
type of game, using C# and the XNA Framework.
The engine has 2D physics and a 3D graphics
renderer based on Deferred Shading. A random-
izing level generator was implemented which is
based on a tile engine. Tiles for a game are au-
thored in the editor and are saved using an XML
based scene graph system.
The result is the ORZAM game, a fully func-
tional multi directional shooter pitting a monkey
against a horde of zombie bears, which was im-
plemented using the game engine and editor.
The engine and editor are functional and fully
reusable for new game projects, although spe-
cialized in 2D games with 3D graphics.

Appendices (number, type):
1 CD-ROM with source and binaries

The contents of the report are freely available, however publishing (with source) must happen only by agreement with

the authors.

Preface

This report deals with the development of a game engine, an editor and a game prototype devel-
oped using the engine and editor.

We assume the reader has basic knowledge of computer science and an interest in game devel-
opment. For the technical parts, a preexisting knowledge of Linear Algebra is assumed.

Citations in the report are written as [1], where the 1 corresponds to an entry in the bibliography,
which is located at the end of the report. Bold and italic are used to emphasize words, no specific
convention is applied.

A CD-ROM is attached to this report, it contains the source of the implemented software.

Jan Jensen

Jacob Korsgaard

Jørgen Ulrik Balslev Krag

Bo Lind Jensen

Dan Jensen

4 ORZAM

CONTENTS

1 Introduction 8
1.1 Report Structure . 8

2 Game Design Document 9
2.1 Key Concepts . 9
2.2 The Setting . 10

2.2.1 Background Story . 10
2.3 Gameplay . 11
2.4 Design Summary . 11

3 Game Engines 12
3.1 Game Engine Fundamentals . 12

3.1.1 Motivation . 12
3.1.2 Typical Features . 12
3.1.3 Specialization . 13
3.1.4 How our game would use a game engine . 13
3.1.5 Scene Graph . 14

3.2 Graphics Rendering . 14
3.2.1 The Application Stage . 15
3.2.2 The Geometry Stage . 17
3.2.3 The Rasterizer Stage . 18
3.2.4 Shading . 19

3.3 Animation . 22
3.4 Physics . 24

3.4.1 Collision Response . 25
3.4.2 Time Stepping . 25

4 Game Engine Selection 26
4.1 Choice of Platform and Technology . 27
4.2 The XNA Framework . 27

4.2.1 Components . 29

5 The EGGS Engine 31
5.1 What XNA Provides . 31

5.1.1 Application Model . 31
5.1.2 Graphics Device Management . 32
5.1.3 Content Import . 32
5.1.4 Audio . 32
5.1.5 Input . 32
5.1.6 Math for 3D games . 32

5.2 Scene Graph . 33
5.2.1 Saving a Scene Graph . 33
5.2.2 Loading a Scene Graph . 34
5.2.3 Interesting Node Types . 35

5.3 Tile Engine . 36
5.3.1 Data Representation . 36
5.3.2 Loading . 37
5.3.3 Updating and Drawing . 37
5.3.4 Optimization . 38

5.4 Level Generator . 38
5.4.1 The LevelTile class . 40

5.5 Lighting and Shading . 42

Oblivious Rampaging Zombies And Monkeys 5

Contents

5.5.1 Deferred Shading . 43
5.5.2 Clearing the G-Buffer . 44
5.5.3 Rendering Geometry to the G-Buffer . 44
5.5.4 Applying Lighting . 46
5.5.5 Putting It All Together . 47

5.6 Physics . 48
5.6.1 2D collision system . 48
5.6.2 Circle / Circle collision . 48
5.6.3 Circle / Polygon . 49
5.6.4 2D Rays . 50
5.6.5 3D collision system . 50
5.6.6 Tile Engine Collision System . 50

5.7 Animation . 51
5.7.1 Exporting in Autodesk 3D Studio Max . 51
5.7.2 Exporting in Blender . 52
5.7.3 Exporting in Softimage|XSI . 53
5.7.4 Importing Models into XNA . 54
5.7.5 Playing Animation At Runtime . 56

5.8 Screen System . 57
5.8.1 GameScreen.cs . 57
5.8.2 ScreenController.cs . 57

6 The BACON Editor 59
6.1 The GUI . 59

6.1.1 Toolbar . 59
6.1.2 Available Content . 60
6.1.3 Tabbed Document Section . 60

6.2 Tools . 61
6.2.1 Selection Tool . 61
6.2.2 Polygon Drawer Tool . 62
6.2.3 Scaling Tool . 62
6.2.4 Rotate Tool . 63
6.2.5 Move Tool . 63
6.2.6 Polygon Modifier Tool . 63

6.3 Selected Implementation Details . 63
6.3.1 Property Grid . 64
6.3.2 Build Content Dialog . 64
6.3.3 Toolbar and EditorControl Hookup . 64

7 The ORZAM Game 65
7.1 ORZAM Overview . 65
7.2 Game Architecture . 67
7.3 Populating the game world . 68

7.3.1 Position Type Spawn Points . 68
7.3.2 Supply Type Spawn Points . 68
7.3.3 Respawning of items . 70
7.3.4 Dynamically generated spawn points . 70

7.4 Movement and Physics . 70
7.4.1 Player movement . 71
7.4.2 Enemy movement . 71

7.5 Tileset Development . 71
7.6 Asset Work . 77

7.6.1 Character and power-ups . 78
7.6.2 Static assets . 81

7.7 Special Effects . 83
7.7.1 Particle System . 84
7.7.2 Blood Particles . 84

6 ORZAM

Contents

7.7.3 Blood Spatter Generator . 84
7.7.4 Traces . 84
7.7.5 Sparks . 85

7.8 Game State Implementation . 85
7.8.1 Class Organization . 85
7.8.2 Menu Navigation . 87

7.9 Audio System . 87
7.9.1 AudioManager . 87
7.9.2 Bear Sounds Emitter . 87

8 Conclusion 89
8.1 EGGS Engine as a Development Platform . 89

8.1.1 Specialized Engine . 89
8.1.2 Software Development Kit (The BACON editor) 89
8.1.3 Performance . 89
8.1.4 Content Support . 89
8.1.5 Final Thoughts . 89

8.2 Conclusion . 90
8.3 Future Work . 90

8.3.1 Further Optimization . 90
8.3.2 Collision Detection Quirks . 90
8.3.3 Product Polish . 91

I Appendix 93

A Sketches 94

B Article: Write Games, Not Engines 97

C Code Examples 99
C.1 Node Reflector Class . 99
C.2 The LevelGenerator.CreateTile function . 100
C.3 The BloodGenerator class . 102
C.4 XmlTilesetImporter Import Function . 104

Oblivious Rampaging Zombies And Monkeys 7

CHAPTER

1

Introduction

Given the overall semester theme ”Game Development and Game Engine Programming”, we are
presented with the task of implementing a game using a game engine.

The purpose is to give us detailed knowledge and an understanding of how a game engine works,
as well as give us knowledge on using a game engine in practice and to account for its strengths
and weaknesses.

To aid the project we are taught three courses, ”Game Programming” ”Computer Graphics Pro-
gramming” and ”Animation Techniques”, which we intend to benefit from in the process.

Based on the purpose of the semester, we formulate the following goal for the project, in order to
limit its scope:

We want to get hands-on experience with game engines by implementing a game using
a game engine.

We base our project on the goal mentioned above and begin by producing a suitable game design,
which will serve as case in the project. The project focus is on game engines, therefore the game
design phase will be brief. The game design case will be used to specify the requirements for a
suitable game engine and for implementing a game.

1.1 Report Structure

Chapter 2 on the facing page contains our game design case on which we base our project.

Chapter 3 on page 12 presents game engines and the motivations for using one. It will also
describe some typical features of a game engine.

Chapter 4 on page 26 considers whether to build an engine from scratch or use an existing
game engine. A choice is made to build our own game engine.

Chapter 5 on page 31 documents the implementation of our own game engine.

Chapter 6 on page 59 describes our implemented level editor, which is a part of our game
engine.

Chapter 7 on page 65 contains our game implementation. The initial game design is imple-
mented using our developed game engine and level editor.

Chapter 8 on page 89 will contain three sections: An evaluation of our engine, a conclusion on
whether we have reached our project goal and finally a section on future work.

8 ORZAM

CHAPTER

2

Game Design Document

This chapter contains the design document for our game. The game design document is sepa-
rated into three parts:

Key Concepts: These are the major decisions made on what kind of game we want to make.

The Setting: Describes the background story, characters, atmosphere and goal of the game.

Gameplay: A more in-depth description of the gameplay and game mechanics we want to imple-
ment.

The actual implementation of the game can be found in chapter 7 on page 65.

2.1 Key Concepts

As mentioned in the introduction our project focus is on the more technical aspects of game
programming. This means that game design is not a crucial part of the project.

As a result, we want a simple and proven game design, which enables us to focus on techni-
cal aspects and not on designing games. We want things to be simple, but we would also like
to work with advanced computer graphics, in order to utilize the Computer Graphics Program-
ming Course. Furthermore, the design should be advanced enough that we encounter sufficient
challenges in using game engines.

Genre We choose to create a Multi-Directional Shoot ’Em Up game, where the player has the
freedom to move and shoot in any two-dimensional direction, with the camera positioned above
the action following the player around. Examples of games that uses this method are ”Robotron:
2084” and ”Geometry Wars”.

We personally find this type of game fun and entertaining. The gameplay seems simple enough
that we can create a working prototype within the project period.

Atmosphere and Game World We want to make the game fun and a little weird. Instead of
creating a realistic game world, we create a fun and silly world, as we personally prefer this kind
of game.

Game Extent As this is a semester project, we aim to implement a working prototype of a game.
However we will still aim to provide a gaming experience of a reasonable extent, that is a game
that takes more than a few minutes to complete.

Instead of creating a sufficiently large ”world” with tons of content, we want to generate unique
worlds using as little content as possible.

Players The game should be playable for a single player, so that you do not need to be multiple
players to play the game. However the genre is well suited for multiple players, so we would like
to implement some sort of multi-player functionality. As networking is beyond the scope of this
project, players should play on the same machine.

Graphics The game should be in 3D for us to make use of the Computer Graphics Programming
Course. Also this makes the technical challenges more interesting.

Oblivious Rampaging Zombies And Monkeys 9

Chapter 2. Game Design Document

2.2 The Setting

In the previous section it was stated that the design of the game should be fun and if possible
a little bit weird. This means that we need a game world where the characters should not take
themselves too seriously, and neither should the player. So if we can come up with an original
concept with original characters, we have the freedom to make them as weird and silly as we
desire. To enforce this silliness we will need sound effects which will go with the overall theme.

For the setting of the game, we will let it take place in a mad scientist’s underground laboratory.
This way we can restrict the player movements but still make the game world open enough that
the player has some choice when moving around. A lab will have lots of rooms of different kinds,
ranging from a cafeteria, where the loyal henchmen can take a break, to weapons storage where
the scientist stockpiles his weapons of mass destruction.

One character you might find in a scientist’s underground laboratory is a lab monkey. Thus
we have the hero character of the game. But a monkey on its own is not weird enough, so
the monkey could have some extra gadgets attached to it, which might guide it or let us make
a story about the player controlling the monkey through this device. Thus we end up with a
monkey character with a radar on its head. To give the monkey some reason to get out of the
lab, something has to have gone awfully wrong. To provide this we introduce a nemesis. For this
position the illogical choice would be zombies, as nothing could be more out of place in a top
secure complex, except maybe for flowers. But zombies are not nearly fun or weird enough, so
the zombie is made into a cuddly zombie bear, which looks harmless but in reality be a vicious
killing machine.

With the characters and the environment in place, it would be a good idea to finalize a story
that encompasses these traits. Such a story could then be expanded upon in the game as the
player advances.

2.2.1 Background Story

For many years the monkey, our hero, had been held captive as test subject by an evil scientist.
Over the years the monkey had been injected with various intelligence enhancing serums, but
with each IQ point the monkey gained, it became only more neglectful towards its physical
condition. As time passed by, the monkey became indifferent and too easily exhausted to walk.
The scientist had put a portable radar on the monkeys head in an attempt to motivate the
monkey to find the exit of the lair; the radar was designed to always be pointing towards the
nearest exit. The monkey, however, had no interest in escaping - it had become too lazy to try.
Thus the scientist, without planning on it, had created the cageless monkey prison.

Trying to get a lazy monkey to escape was not the only thing occupying the scientist’s mind.
The scientist was madly fixated with preserving all kinds of wildlife, and consequently he started
gathering bears from all over the planet. As it is common knowledge that zombies need no food
to survive, and only occasionally ate brains, it was considered to be the best option to turn the
animals into zombies rather than buy food for them. So the scientist injected all the bears with
a serum which turned them into mindless, sometimes brain eating, zombies. Loosing a few
workers during annual bear count was considered an acceptable risk, outweighing the cost of
food numerous times.

As the scientist now had a great number bears, the safety risk became ever increasingly larger.
This eventually led to the construction of the Defence-O-Magic system, a single machine intended
to shoot and stop the bears. It used an unlimited supply of Bio-Goo to construct its specially
tuned zombie stopping projectiles.

Disaster strikes...

One day all the doors on the holding pens slammed open and the bears started pouring out.
Eventually a single bear reached a Defence-O-Magic cannon and got its zombie DNA mixed with
the cannon’s Bio-Goo supply, which had an unfortunate design flaw that a single cannon’s
supply was linked to all cannons in the lab. This new zombie Bio-Goo had the side effect of
the cannons shooting infectious bears, instead of the intended zombie stopping projectiles. This
new race of zombies was created with a higher than normal metabolism, making them grow to
an unnatural size in less then a minute. It was only a matter of time before a rambling zombie

10 ORZAM

2.3. GAMEPLAY

accidentally ran into the magnetic field of the core reactor, thus shutting it down leaving only the
emergency power on. The monkey, almost hypnotized by the headlights on a nearby Segway, was
scared of the different growling noises the bears made in the dark. It knew that given its cardio
and the now pitch darkness of the laboratory it would never make it out alive. So it grabbed the
Segway and scooted off for the elevator, and towards freedom.

To be continued in the game...

2.3 Gameplay

The overall goal of the game is to have the player reach the exit, thus advancing to the next level
and eventually winning the game by reaching the exit on the final level. To make this task a bit
more difficult, the player’s path should be hindered by an opposing force.

One type of enemy would be a slow moving enemy character that attempts to catch the player
if he gets within line of sight. These enemies will hurt the player if ever allowed too close. A
problem which occurs with this type of enemy is the player being able to simply run away,
without ever being in danger or having to shoot.

So another kind of enemy is introduced. This enemy will shoot at the player, so the player has
to change direction, or at some point stop, to avoid damage. A simple cannon shooting fireballs
is not funny, so instead this cannon is set to shoot morphing enemies. The projectile starts out
as a small zombie which, if left alone, over time grows larger and faster. Eventually the player
becomes unable outrun them, and will have to shoot them to survive.

To enforce the feeling that there are multiple types of enemies, each of these could be given a
unique sound effect.

To have zombies waiting for the player, a mechanism that allows for zombie respawns will be
implemented. Although we never want the player to run out of zombies to shoot, there should
be periods where there are no enemies. This gives the player time to mentally recuperate, while
looking at his ammo and health status. Also, this downtime will make the next encounter with a
lot of zombies more thrilling, instead of constantly being under attack and mentally alert.

In case the players’ health reaches zero, the player will die and the level will be reset.
The player will need to be armed with some kind of weapons to defend themselves. At the start

of the level the player has a low powered weapon, which is useful until a better weapon is found.
If a player ever runs out of ammunition, he will have to find some more or have his brains eaten.

Since the player can run out of ammo or health, some kind of ammo and health power-ups
are needed. The power-ups are items on the floor the player can pickup to replenish ammo and
health. Powerful zombies could carry more powerful weapons, giving the player a reason to let
them grow. This puts the player in the situation where they have to choose whether it is worth
letting a little harmless zombie grow into a vicious killing machine, to get a chance at a better
weapon, or kill it immediately while it is relatively harmless.

To differentiate between powerful and weak weapons, two different types of ammo are used.
The powerful weapons and their ammo should be scarce in the environment but droppable by
the powerful zombies and the zombie cannon.

Each time the player plays the game, the levels should be different. But as we do not want to
create a lot of different levels by hand, new levels are to be procedurally generated.

When multiple players play the game, friendly fire will be activated, so the players have to be
more cautious when shooting. If one player dies, all players lose the game. This is done to force
the players to think as a team.

2.4 Design Summary

The design calls for a wacky multi-directional Shoot ’Em Up game, in which the levels are gener-
ated on the fly using as little manually authored content as possible.

The action in the game takes place in 2D, but is rendered in 3D; We call this a 2.5D game.
The game will feature both single and multiplayer gameplay, taking place on the same ma-

chine.

Oblivious Rampaging Zombies And Monkeys 11

CHAPTER

3

Game Engines

This chapter presents game engines, our understanding of what a game engine is and the mo-
tivations for using one. We will be describing the typical features of a game engine and how we
expect to use one for the development of our game.

After describing game engines in general we proceed to detail the features we intend to use
from a game engine.

3.1 Game Engine Fundamentals

Josh Petrie defines a game engine as follows:

An ”engine” is a collection of robust, reusable software subsystems (possibly includ-
ing both code libraries and tools) designed to facilitate the development of actual games
by addressing specific requirements.

We agree with this definition, except we do not consider tools a part of the engine. Instead these
are a part of a general Software Developers Kit (SDK). We believe these are separate because
the engine can be used without the SDK, where the SDK is only useful when accompanying the
engine it was designed for. Furthermore, when the game is running it is using the game engine,
but not the SDK.

We believe that a game engine in its essence is a code library, meaning that it is a collection of
generic classes which are used when running a game. Game engines vary greatly in complexity.
Some provide only a few helper classes, while others are complete systems that allow developers
to create games visually using drag-and-drop.

3.1.1 Motivation

The main reason for creating and using game engines is the same as creating and using code
libraries in general, which is reusing code.

Engines are also often accompanied by an SDK, which has the benefit of giving content creators
something to do early in the development process. They can begin using the tools right away and
expect the resulting content to be playable using the engine.

3.1.2 Typical Features

A game engine will typically provide one or more of the following features:

Content Management: Engines often have functionality for importing different types of content
such as 3D models, textures, sounds, scripts and levels. An engine’s SDK often define
which content file formats can be used.

Level Representation: The objects of a game world are usually represented in the game using a
level data structure, defined by the engine. Typically these are a form of tree, and are called
Scene Graphs.

Rendering: Some engines have a rendering subsystem for drawing the game world on screen.
These systems are often tuned to the type of game the engine is designed for. Some are
very advanced providing features such as animation of 3D models, advanced lighting and
special effects.

Platform Independence: Engines will often abstract the platform used away from the developers.
This way a game will only have to be developed for the engine to be able to run on all
platforms supported by the engine.

12 ORZAM

3.1. GAME ENGINE FUNDAMENTALS

Input: Engines can also abstract away the specifics of input handling.

Physics: Engines often have physics systems that define how objects interact with the world and
each other. The functionality ranges from full-fledged real-world physics simulations to
simple 2D collision detection.

Artificial Intelligence: Techniques used to create the illusion of intelligence for the non-player
characters in the game.

Networking: Systems for handling network communication. Often used for multiplayer games.

Game-Loop: Some engines provide a game-loop. During the game-loop all systems of the game
are updated. Typically, player input is read, the game world is updated and drawn to the
screen. The game-loop repeats itself until the game has ended.

Game State Management: A game often has several different states such as a menu, being
paused, searching for network games and of course being in-game. Engines often have
functionality for switching game states and displaying menus.

Storage Management: Saving and loading game progress is also often part of an engine’s re-
sponsibility. This is even more important if the game is supposed to run on several different
platforms.

Implementing all the above features and getting them to work together properly is a very ex-
pensive and time consuming process. Therefore middleware systems are often incorporated as
subsystems in the engine. Examples are the Havok Physics1 engine, NaturalMotion Euphoria2

engine for procedural animations and fmod3 interactive audio engine.
When an engine has reached release stage, most game developing companies reuse the same

game engine to create multiple games, sometimes modifying the engine to make it handle specific
cases.

3.1.3 Specialization

Most game engines are tailored to a specific genre of games, meaning that engines for different
genres generally handle the same concept, such as network and collision code, but in differently.

The physics system in a real-time strategy engine like ”RNA”4, which was used to create ”CnC
Red Alert 3”5 might be less accurate, than the one used in an FPS game engine such as ”Un-
realEngine3”6.

Although the rule is that game engines are normally tailored to a specific genre, there are
exceptions to this rule as they can still be applied to other game genres. An example of this is
”UnrealEngine3”, which has been licensed to be used in numerous upcoming Massive Multiplier
Online Games like Mortal Online7 and Huxley8.

3.1.4 How our game would use a game engine

We can now describe which engine subsystems we require for our game according to its design
as seen in chapter 2 on page 9.

Basic 2D physics: Because the game action is in 2D we need a basic 2D physics system.

Content Management: The engine must be able to import 3D assets we create using our favorite
3D modeling packages. We also need support for other content types, like bitmaps, sound
effects and music.

1http://www.havok.com/
2http://www.naturalmotion.com/
3http://www.fmod.org/
4RNA (not an acronym) is an updated version of the SAGE (Strategy Action Game Engine) used for CnC Generals, and

The Battle for Middle-earth series
5http://www.commandandconquer.com/
6http://www.unrealtechnology.com/
7http://www.mortalonline.com/
8http://www.huxleygame.com/

Oblivious Rampaging Zombies And Monkeys 13

http://www.havok.com/
http://www.naturalmotion.com/
http://www.fmod.org/
http://www.commandandconquer.com/
http://www.unrealtechnology.com/
http://www.mortalonline.com/
http://www.huxleygame.com/

Chapter 3. Game Engines

Procedural Levels: The engine must be able to generate randomized levels in 2D.

Multiple input devices: To allow multiplayer gameplay on the same machine, the engine must
handle input from several devices simultaneously. The engine should be able to handle
gamepads and keyboard input.

3D Graphics: The engine must be able to render 3D graphics. It must also be able to handle
animated 3D models.

Available source code: The most high-level parts of the engine source code should be available.
We are not interested in the most low-level details, such as platform specific details on how
storage management is implemented.

The following sections will elaborate on scene graph, 3D graphics, animation and physics sub-
systems we need.

3.1.5 Scene Graph

A scene graph is a way of representing data in a game world; as in a data structure where
parent nodes affect the child nodes. The scene graph can be used to describe logical relationship
between entities, and to increase performance. In essence a scene graph is an n-tree that can
have as many children as is needed[2].

When describing a logical relationship between entities, the nodes involved have some dynamic
spatial relevance in the game world. An example of this could be a car. A car is made up of a
bunch of components, where the main component is the chassis, then some doors, windows,
an engine, and eventually a chauffeur which could get in and out of the car. Making the car’s
chassis the parent node means that if the car chassis translates in a direction, the child nodes
get the same action applied, meaning the same applies to rotation, etc.

Furthermore each of the child nodes can have individual actions applied to them; one such
action could be damaging the engine or one of the windows of the car, without the chauffeur
taking any damage.

Overall there is no clear definition on what a scene graph is, as programmers implement and
adapt scene graphs to suit the needs at hand. There is a plethora of different nodes one can
create and implement for a given graph. Terrain, character, camera, and particle system nodes
are just some. The implementation of the scene graph depends on the requirements of the
game[9].

3.2 Graphics Rendering

This section presents the basics of rendering 3D graphics. The pipeline we describe is divided
into three stages: the application, geometry and rasterizer stages. An overview of the pipeline
can be seen on figure 3.1 on the next page.

14 ORZAM

3.2. GRAPHICS RENDERING

Figure 3.1: An overview of the rendering pipeline. The arrows indicate data flow.

3.2.1 The Application Stage

The application stage is the part of a 3D application or game that runs entirely in software on
the CPU. Commonly this is where we have the game-loop with an update and draw function. In
the update function we position all the pieces of the game like characters, environment, cameras
and lights. In the application stage is where we would put physics, collision detection and basic
game logic.

When the setup is complete we prepare the scene to be rendered by the graphics pipeline.
The 3D geometry we want to render is defined using vertices, which are simply points in 3-
dimensional space, although when represented in our game, we may want to attribute them
extra information such as color, texturing coordinates and normals (we will get back to that).
The vertices in a piece of 3D geometry (or model) are in what is called object space, which means
they are relative to the origin of the object they are a part of. When we want to draw the model
somewhere in our world, we first need to describe how to transform its vertices into world space,
to make their coordinates relative to the world. This is done by creating a World transformation
matrix we can multiply with the vertices to apply translation, rotation and scale to the object.

Next we want to describe where we want to see the world from. This is done using cameras. A
camera is defined using a point to represent the position of the camera, another point represent-
ing the target of the camera, or what it looks at, and finally a vector representing which direction
is up for the camera. With this information we can create a View matrix, which will move all our
vertices into camera/eye space, where their positions are relative to the camera, with the nega-
tive Z-axis being the direction the camera is pointing, Y -axis pointing up and X-axis pointing to
the right.

Finally, we want to describe how to position the geometry on the screen, that is moving the

Oblivious Rampaging Zombies And Monkeys 15

Chapter 3. Game Engines

vertices from eye space into screen space. We want to project the 3D geometry onto a 2D plane
(representing our screen), by using a Projection matrix. In screen space the upper left corner of
the screen is (−1,−1), the lower right is (1, 1) and the Z-axis is the depth ranging from −1 to 1.
This is the unit cube called the canonical view volume.

The two most common projection matrices are perspective and orthographic. Perspective is
the most commonly used as it mimics the way people see the world, specifically how objects
appear smaller the further away they are from the camera, and parallel lines can converge on
the horizon.

The main characteristics of a orthographic projection are that parallel lines remain parallel and
objects maintain their size in distance. The difference between the two is illustrated in figure 3.2.
Together the projection and view matrices form the view volume, or frustum, which contains the
part of our world that will be rendered to the screen.

Figure 3.2: The same three elongated boxes viewed from the front using perspective and ortho-
graphic projection. Because lines remain parallel with orthographic projection, the
three boxes appear to be equal size and at the same distance.

By now we are ready to pass the data to the graphics device. For each piece of geometry we
need to pass:

• A Declaration of what information we have attached to the vertices, most commonly a
position, a surface normal vector, a color and a set of texture coordinates.

• Our vertices put into a VertexBuffer which can be loaded onto graphics memory.

• The type of Primitive we want to draw: Points, lines or triangles. For specifics refer to
Real-Time Rendering[1].

• Any light sources in our scene.

• Any Textures we want to apply to the geometry.

• And our three matrices: World, View and Projection

16 ORZAM

3.2. GRAPHICS RENDERING

For more complex models we would also want to use an IndexBuffer, which is a list of indices
of which vertices from the VertexBuffer to use. To illustrate the gain of using an IndexBuffer
imagine a cube, which we would need 12 triangles to draw, two for each face (see figure 3.3).
When using the TriangleList primitive type, we need 3 vertices for every triangle, that makes
36 vertices for a simple cube, and as we have seen each vertex can have a large amount of
information attached to it.

Figure 3.3: Three of the six faces of a cube drawn using triangles.

As many of these vertices contain the same information, we should be able to represent the
cube using only 8 vertices, one for each corner. So if we do that and use an IndexBuffer to decide
which vertices to use for each triangle, it would contain 36 indices and we could choose to use a
very small data type to represent these, for example a byte.

If our vertices only contain a position as three 32bit floating-point numbers, the 36 vertices
use 432 bytes (36 vertices * 3 floats at 4 bytes each).

Using the IndexBuffer costs 36 bytes for the indices and 96 bytes for the 8 vertices (totalling
132 bytes). That is a reduction of 300 bytes for a simple cube.

Using an IndexBuffer can cut down on the amount of data we need to send to the geometry
stage, allowing us to have more geometry on screen as we are using less bandwidth.

3.2.2 The Geometry Stage

On modern hardware the geometry stage and rasterizer stage are hardware accelerated. Graph-
ics devices are designed to handle the transition from the data we have fed it to displaying it
correctly on the screen. It does so very quickly because it has a limited instruction set and is
highly specialized and optimized. It also has the benefit of having its task being embarrassingly
parallelizable. Each vertex (and later pixel) can be processed independently, which gives the
device almost unlimited freedom to balance the workload onto several pipelines running simul-
taneously.

The first task of the geometry stage is to transform the vertices from object space to screen
space through world- and eye space. It does so by transforming the position and optionally
normals using a concatenation of the three matrices World, View and Projection. The geometry
stage can also perform per-vertex lighting calculations, such as Gouraud shading (see [1] for
details).

Earlier graphics devices implemented a fixed-function pipeline, which meant the computations
done on the device were always the same. The device could be slightly configured for every frame,
but once running the computations for every vertex and pixel were the same.

Oblivious Rampaging Zombies And Monkeys 17

Chapter 3. Game Engines

Modern graphics devices have programmable pipelines in addition to the fixed-function ap-
proach. With programmable pipelines the developer can make their own shading algorithms and
have the graphics device use those during the geometry and rasterizer stage, these programs
are popularly known as Vertex- and Pixel Shaders, also pictured on the overview figure 3.1 on
page 15.

The shaders can be written in high-level languages and then compiled for execution on the
graphics device, a simple example of a vertex shader function which transforms vertices from
object space to screen space written in HLSL (High Level Shader Language) follows:

Listing 3.1: Simple Vertex Shader in HLSL
1 // The world, view and projection matrices provided by the Application Stage
2 float4x4 World;
3 float4x4 View;
4 float4x4 Projection;
5
6 // Vertex Shader function, takes a position as input and outputs a transformed position
7 float4 VSTransform(float4 pos : POSITION0) : POSITION0
8 {
9 float4 worldPosition = mul(pos, World);

10 float4 viewPosition = mul(worldPosition, View);
11 float4 screenPosition = mul(viewPosition, Projection);
12
13 return screenPosition;
14 }

Once the vertices are transformed, the geometry stage will perform clipping, which is the pro-
cess of removing the vertices that are not within the screen space unit cube, which corresponds
to removing all vertices that were not within the view frustum. It will then pass the geometry to
the rasterizer.

3.2.3 The Rasterizer Stage

The last stage of the pipeline is to rasterize the geometry; that is convert it to pixels on the screen.
The rasterizer stage processes each triangle or primitive pixel by pixel and calculates the correct
color of every pixel. It is also at the rasterizer stage textures are applied. By interpolating the
texture coordinates on the vertices, the rasterizer can assign each pixel a specific coordinate,
which it can use to do a texture lookup on an image. This effectively glues an image onto
geometry, an example of which is pictured on figure 3.4.

Figure 3.4: The box on the right has a texture applied.

As with the geometry stage, the rasterizer stage is programmable. Pixel shaders can be used
on most recent graphics hardware, allowing the developer to apply advanced lighting and effects
on a per-pixel basis.

One interesting use of pixel shaders is post-processing effects. By rendering the entire scene
onto a texture and then rendering the texture using a quad covering the entire screen, the

18 ORZAM

3.2. GRAPHICS RENDERING

developer can use a pixel shader to apply effects to the scene, such as blurring, depth-of-field,
distortion filters and much more.

Following is an example of a very simple pixel shader function, which applies a texture to the
geometry:

Listing 3.2: Simple Pixel Shader function in HLSL

1 texture Texture;
2
3 // The sampler does interpolation between pixels on the texture
4 // Can be configured to use different algorithms, like nearest neighbor and linear interpolation
5 sampler texSampler = sampler_state
6 {
7 Texture = (Texture);
8 };
9

10 // The Pixel Shader function, takes a texture coordinate as argument.
11 // Returns the color from the Texture using texSampler
12 float4 PixelShaderFunction(float2 TexCoord : TEXCOORD0) : COLOR0
13 {
14 // tex2D is an HLSL function for doing texture lookups.
15 return tex2D(texSampler, TexCoord);
16 }

The pixel shader is run on each pixel of each fragment of geometry, which means that if two
triangles both overlap the same pixel, the shader function is called twice for that pixel. Usually
the color of the last drawn fragment will be the one shown on screen, but the rasterizer on most
graphics devices also support using a depth buffer (also called Z-buffer) to determine which
fragment is nearest the camera. The rasterizer stage also handles other effects like fog and alpha
blending (transparency), most of which is hardware accelerated on modern graphics devices[1].

3.2.4 Shading

One of the most crucial parts of creating a believable 3D environment is to apply proper lighting.
Modeling real world lighting using brute force is prohibitively expensive, instead approximations
are used.

Shading is the process of calculating the color of a pixel, for example using lighting calcula-
tions. In games the three most commonly used shadings are Flat, Gouraud and Phong, which
correspond to shading per-triangle, per-vertex and per-pixel. Gouraud corresponds to perform-
ing the lighting calculations using a vertex shader and Phong corresponds to using a pixel shader.
Flat is not available in programmable-pipelines, but a fixed-function pipeline can be set to use
flat shading.

The most commonly used lighting model to calculate the color in real-time graphics, such as
games, is called the Blinn-Phong Model (not to be confused with Phong shading). At each point
of shading, three color components are calculated: Ambient, Diffuse and Specular. In the end
all three components are summed up to get the final color. See figure 3.5 on the following page
for an example.

In this section, the light sources we use are point lights. Point lights have a position from
where they emit light in all directions.

Oblivious Rampaging Zombies And Monkeys 19

Chapter 3. Game Engines

Figure 3.5: The different components of the lighting model. This is rendered using Phong shading
(per pixel).

3.2.4.1 Ambient

The ambient component models the ambient light conditions, which is the amount of light that
reaches all pixels. This is an approximation for radiosity, which cause light rays to bounce
around a room lighting up areas that are otherwise in shadow. The ambient component is not
affected by the lights in the scene and is therefore equally applied to all objects.

In practice the ambient component is simply a color multiplied component-wise to the material
color. In HLSL:

Listing 3.3: Ambient Lighting
1 // Initialize ambient light to dark gray
2 // This parameter can be set from the Application Stage
3 float4 ambient = float4(0.2, 0.2, 0.2, 1);
4
5 // matColor is the color of our material at this point.
6 float4 AmbientComponent(float4 matColor)
7 {
8 // Multiplying in HLSL is component-wise, which means we get:
9 // float4(matColor.r * ambient.r, matColor.g * ambient.g, matColor.b * ambient.b, matColor.a * ambient.a);

10
11 return matColor * ambient;
12 }

3.2.4.2 Diffuse

The diffuse component is based on Lambert’s Law[1], which states: On surfaces that do not
shine (ideally diffuse), the amount of light reflected is relative to the cosine between the normal
of the surface and the direction from which the light is coming. This corresponds to the dot
product between the surface normal n and the light vector l (going from the surface point to the
light), if they are normalized.

This means two things: The diffuse light factor is one when the light hits the surface directly,
and the factor is zero when the light hits directly from the side (perpendicular to the surface
normal). We are not interested in negative factors, because they mean the light is behind the
surface.

We calculate the diffuse in HLSL like this:

Listing 3.4: Diffuse Lighting
1 // Bright white light
2 float4 diffuseLight = float4(1, 1, 1, 1);
3
4 // The light’s position
5 float3 lightPosition = float3(10,10,10);
6
7 // matColor is the color of our material at this surfacePosition.
8 float4 DiffuseComponent(float4 matColor, float3 surfacePosition, float3 surfaceNormal)
9 {

10 float3 l = normalize(lightPosition - surfacePosition);

20 ORZAM

3.2. GRAPHICS RENDERING

11
12 // calculate our diffuse factor, ensuring it is 0 or more.
13 float diffuseFactor = max(dot(surfaceNormal, l), 0);
14
15 // we just multiply the factor on our material and light.
16 return diffuseFactor * matColor * diffuseLight;
17 }

3.2.4.3 Specular

Specular lighting is meant to simulate the shininess of a surface by creating highlights. It is
based on the observation that shiny surfaces reflect light according to the law of reflection (”The
angle of incidence is equal to the angle of reflection”), in which a ray of light hitting a surface and
the light reflected from the surface are angled equally from the surface normal. See figure 3.6.
Contrary to diffuse lighting, specular lighting is view-dependent as it changes when the camera
changes position. This is why an eye-vector is used in the calculations, which is a normalized
vector pointing at the camera from the surface point.

Figure 3.6: Law of Reflection. Image from WikiPedia: http://en.wikipedia.org/wiki/File:
Reflection_angles.svg

A shininess factor is used to attenuate the specular highlights, so it is more prominent where
the light is reflected directly towards the viewer.

There are a few ways of creating the highlights. The first uses the angle between the reflection
and view vector, as with diffuse, we simply dot the two vectors together and clamp them to the
[0-1] range. To achieve the attenuation we take the resulting dot-product to the power of the
shininess factor.

Another alternative is to use a half-vector and the surface normal instead of using the reflection
vector and eye vector. The half-vector is the light vector added to the eye-vector normalized. This
approach can be cheaper on architectures that do not have an optimized reflect API call. The
dot-product of the half-vector and the surface normal is clamped and taken to the power of
shininess.

The HLSL source of the techniques are:

Listing 3.5: Specular Lighting
1 // Shininess
2 float4 shininess = 8;
3
4 // Specular light color
5 float4 specularColor = float4(1, 1, 1, 1);
6
7 // The light’s position
8 float3 lightPosition = float3(10,10,10);
9

10 // The camera’s position
11 float3 cameraPosition = float3(-10,10,-10);

Oblivious Rampaging Zombies And Monkeys 21

http://en.wikipedia.org/wiki/File:Reflection_angles.svg
http://en.wikipedia.org/wiki/File:Reflection_angles.svg

Chapter 3. Game Engines

12
13 // Specular using the reflection vector, matSpecColor is the materials specular color
14 float4 ReflectSpecular(float4 matSpecColor, float3 surfacePosition, float3 surfaceNormal)
15 {
16 // Indicent vector (unlike the half-vector approach and diffuse, we need the vector pointing toward the

surfacepoint)
17 float3 i = normalize(surfacePosition - lightPosition);
18
19 // Eye normal
20 float3 e = normalize(cameraPosition - surfacePosition);
21
22 // Reflection vector reflect is (r = i - 2 * surfaceNormal * dot(i, surfaceNormal))
23 // Taken from MSDN article on reflect: http://msdn.microsoft.com/en-us/library/bb509639(VS.85).aspx
24 float3 r = reflect(i, surfaceNormal);
25
26 float specularFactor = pow(max(0, dot(e, r)), shininess);
27
28 return specularColor * specularFactor * matSpecColor;
29 }
30
31 // specular using half-vector
32 float4 HalfVectorSpecular(float4 matSpecColor, float3 surfacePosition, float3 surfaceNormal)
33 {
34 // Light Vector
35 float3 l = normalize(lightPosition - surfacePosition);
36
37 // Eye normal
38 float3 e = normalize(cameraPosition - surfacePosition);
39
40 // Half Vector
41 float3 h = normalize(l+e);
42
43 float specularFactor = pow(max(0, dot(h, surfaceNormal)), shininess);
44
45 return specularColor * specularFactor * matSpecColor;
46 }

3.3 Animation

Most modern games have some sort of animation, implemented either procedurally (in the game
code) or authored by animators in a 3D modeling application. This section will describe a few
techniques used for animating objects in 3D.

The most basic type of animation used in 3D game engines is Rigid animation. Rigid anima-
tion is done by manipulating the World transformation of objects over time to achieve motion.
It is called rigid because it does not change the fundamental shape of the objects transformed,
instead it simply applies linear transformations on the object. Most 3D authoring tools have
support for exporting rigid animation.

Animators set up an animation by creating keyframes at different points in time for the an-
imated objects and each keyframe is associated a transformation. The application will then do
linear interpolation between two keyframes, thereby achieving smooth motion from one pose at
a specific time to another pose at a later time. The application can export the keyframes and
let the game engine do interpolation or it can simply plot the animation, inserting keyframes for
every frame, so the engine will not spend cycles doing interpolation, thus sacrificing space for
speed.

3D models are commonly structured hierarchically, such that applying a rotation to a tank
will rotate the entire tank, but the turret may be rotatable relative to the tank. This allows
for interesting animations and is perfectly acceptable for machines, robots and other inorganic
models. However, for organic models such as creatures and humans a more advanced method
is required for animations to look compelling.

In animation, Stitching is the process of associating vertices with rigidly transformed Bones.
The bones are placed within an (organic) mesh and each of them are associated with a number
of vertices, such that applying a transformation to the bone corresponds with transforming all
vertices associated with it. A common application of this technique is to model a humanoid and
stitching it to a skeleton of bones to make convincingly animated human characters.

With stitching, a vertex can only be associated with one bone. This is improved with a tech-
nique called Skinning, where a vertex can be associated with multiple bones with different weight

22 ORZAM

3.3. ANIMATION

factors. This is especially important for joints like elbows and knees, where stitching looks very
unnatural at large rotations. An example of the two techniques in use is pictured on figure 3.7.

Figure 3.7: Two cylinders with bones, the one on the left uses skinning, the one on the right is
stitched.

While Rigging a mesh to a set of bones, which is associating vertices to bones for skinning or
stitching, the model is in a neutral pose also called the Bind Pose. The absolute transformation
(in object space) of each bone in this pose is used to calculate the position of vertices when the
bones are moved, such that the transformation applied to a vertex is the relative transformation
between the desired pose and the bind pose. To achieve this we save the Inverse Bind Pose,
which is the inverted absolute transformation matrix of each bone. When the pose is changed
each vertex is transformed first using the Inverse Bind Pose matrix, then the absolute transfor-
mation matrix of the bone in the current pose. The two matrices are often concatenated in the
Application Stage and sent as one matrix to the Geometry Stage; We call this a SkinTranform
matrix. An example skinning vertex shader function follows:

Listing 3.6: Skinning Vertex Shader HLSL function
1 float4x4 World;
2 float4x4 View;
3 float4x4 Projection;
4
5 // The (inverseBindPose * absoluteBoneTransformation) matrices for every bone.
6 float4x4 Bones[59];
7
8 // We get a position, skinning indices and weights from the Application Stage.
9 struct SkinnedVertexShaderInput

10 {
11 float4 Position : POSITION0;
12 float4 BoneIndices : BLENDINDICES;
13 float4 BoneWeights : BLENDWEIGHT;
14 };
15
16 // Returns the skinned position.
17 float4 SkinnedVS(SkinnedVertexShaderInput input) : POSITION0
18 {
19 // Blend between the weighted bone matrices.
20 float4x4 skinTransform = 0;
21
22 // For skinned animation we add four weighted transformation matrices to get the final transformation.
23 skinTransform += Bones[input.BoneIndices.x] * input.BoneWeights.x;
24 skinTransform += Bones[input.BoneIndices.y] * input.BoneWeights.y;
25 skinTransform += Bones[input.BoneIndices.z] * input.BoneWeights.z;
26 skinTransform += Bones[input.BoneIndices.w] * input.BoneWeights.w;
27
28 // Apply the final transformation to the position
29 float4 weightedposition = mul(input.Position, skinTransform);

Oblivious Rampaging Zombies And Monkeys 23

Chapter 3. Game Engines

30
31 // Move position into screen space for the rasterizer.
32 float4 worldPosition = mul(weightedposition, World);
33 float4 viewPosition = mul(worldPosition, View);
34 float4 screenPosition = mul(viewPosition, Projection);
35 return screenPosition;
36 }

With skinning we reduce the problem of organic animation to the rigid animation of bones,
the alternative is to save the position of every vertex at every keyframe and interpolate their
positions. This corresponds to having several different versions of the same model that have to
be sent through the pipeline, which is often prohibitively expensive in bandwidth.

3.4 Physics

The physics subsystem we need for our game, is a simple 2D collision detection and response
system. We also briefly mention the basics of collision detection in 3D.

Collision detection systems in game engines allow checking whether two solid object in the game
world collide with each other. Doing precise checks for collision for all objects in the game
world would require a lot of computing time, so collision detection systems often use some kind
of approximation to speed up the detection of collisions. Often objects in the game world are
enclosed in bounding volumes which are then used for collision detection instead of the actual
object.

If objects in the game world can be rotated, collision detection using bounding volumes can
become imprecise unless the bounding volume is adjusted according to the rotation. Circles and
spheres do not have this problem, but if a bounding rectangle is used to represent a rocket in
a 2D game and the rocket is rotated, part of the rocket may no longer be inside the bounding
rectangle. The problem can be solved in two ways: Either a new bounding volume can be
calculated to fit around the rotated object or the bounding volume can be rotated along with the
object. Figure 3.8 illustrates this.

Figure 3.8: Example of orientation of bounding rectangle.

It can be seen from the illustration that calculating a new bounding volume will lead to a less
precise bounding volume for the object. However it may sometimes be worthwhile to do this as
comparing bounding volumes that are not aligned to the world’s axis requires more computing
time. A simple workaround for this problem is to represent objects with circles or spheres
whenever possible.

Another good optimization is to partition the game world using a spatial data structure. For
example, a 2D game world can be partitioned into quadratic and equally sized pieces, called
tiles. The idea is to reduce the amount of collisions to detect based on the objects’ positions in
the world.

Collision Detection in 2D In 2D precise collision detection can be done by doing collision detec-
tion per-pixel. Simpler collision detection can be achieved by using bounding circles or rectan-
gles. More complex objects can be represented by polygons.

24 ORZAM

3.4. PHYSICS

Collision Detection in 3D In 3D, precise collision detection is extremely complex and therefore
used very seldomly. There is a wide range of volumes that can be used to approximate precise
collision, where the most often used ones are bounding spheres and boxes. Since 3D collision de-
tection requires more computing power than 2D collision detection 3D games are often designed
in such a way that part of the collision detection can be done in 2D.

3.4.1 Collision Response

When a collision is detected in a computer game the game will often have to provide some kind
of response. In order to give a response which mimics the real world just detecting whether
a collision has occurred is often not enough. The collision detection system in a game which
wants to approximate real-life physics will have to provide additional information when a collision
occurs, such as where the collision occurred and how the involved objects can be manipulated
so that there will no longer be a collision.

3.4.2 Time Stepping

Most physics engines detect collisions each update and then try to solve them according to the
physics rules. Some engines use the elapsed time between two updates as a factor in how much
to move the objects. One problem with this approach is that fast moving objects might pass
through each other between two updates without the system detecting it.

Figure 3.9: Missed collision between two circles.

The left side of figure 3.9 shows two circles moving towards each other at high speed. In the
next update (right side of the figure) the two circles has passed through each other. Since the
circles do not intersect at the time of either of the two updates the collision detection system will
not report a collision between the two circles, even though they have actually passed through
each other.

A way to avoid this problem is to do multiple physics simulations in each update in time steps
small enough to be sure that no object can pass through another. Another possibility is to not
use the elapsed time between updates as a factor and simply move a fixed amount in every
update. This causes the physics to be based on how often an update occurs and will slow down
the game if the engine cannot keep a stable rate of updates.

Oblivious Rampaging Zombies And Monkeys 25

CHAPTER

4

Game Engine Selection

In order to select a game engine for implementing the game, there is an overall choice that has
to be made. We have to decide on whether to use an existing game engine or to build our own
game engine.

There are several arguments for and against both approaches:

Approach A: Use an existing game engine

The primary argument for using an existing engine is that we can start implementing the game
right away. By doing this we also get valuable experience on using an existing game engine.

An existing engine could also be accompanied by an SDK enabling content creators to begin
work immediately.

Depending on the choice of game engine, the level of required background knowledge of for
example 3D graphics can be low, which can increase productivity, since time can be spent on
creating the game and not reading up on more theoretical aspects.

Approach B: Build a custom game engine

The primary argument for building our own game engine is that we get valuable in-depth knowl-
edge of how a game engine is constructed. Since we are still going to implement a game, we will
still get the experience of using a game engine in practice.

In the process of building a game engine, we will likely encounter a lot of challenging technical
issues, which would be already solved in an existing game engine.

Developing a custom game engine for a game can ensure that the engine has exactly the
features we need. However, we would need to build these features from scratch, taking up much
of the time we could be using on implementing the game.

Furthermore, our engine would not have a preexisting SDK or tools, meaning that these would
also have to be developed.

Our choice

In this project we choose to prioritize learning over the extent of the game. In other words we
favor the learning process over the extent of the game.

Josh Petrie argues in appendix B on page 97, that in order to create a good game engine it
should be based directly on an actual game. Such that the features in the engine are designed
to solve specific problems and not hypothetical situations.

Therefore, we are going to implement a working prototype of our game described in the design
document from chapter 2 on page 9.

We consider the learning experience from implementing a game engine more important than
making a comprehensive, well-polished game. We do not consider any of the engine requirements
from section 3.1.4 on page 13 unrealistic for us to implement.

Some of the project group members already have a certain level of experience with game engine
development. This experience combined with the technical requirements for the engine, means
that we do not see the task of building our own game engine as overwhelming.

In order to get the full experience of using a game engine, we need to build an SDK. This is
because most existing engines have SDKs of some sort. For our game we want an editor to ease
creation of levels. This is a big decision because the editor is a separate piece of software with

26 ORZAM

4.1. CHOICE OF PLATFORM AND TECHNOLOGY

its own development cycle, and it will take a significant amount of time to build. However, it will
provide an interesting technical challenge and a more realistic end product.

The final conclusion of this section is that we are going to implement our own game engine
with SDK in the form of a level editor.

We will decide on platform and technology for the engine and SDK in the following section.

4.1 Choice of Platform and Technology

In this section we will choose platform and technology for implementing our game engine. The
requirements for the engine are not unusual or bound to some specific technology, so we have a
wide range of options.

All members of the project group own a PC, so for convenience we choose to do the development
work on PC and to target the PC platform.

Instead of spending time on less relevant technical details, we would like to work with a level
of abstraction which allow us to focus primarily on game engine related challenges. Therefore
we need standard libraries with access to graphics device, sound card, file input/output, etc.
We are only developing a prototype engine and game, so we prioritize pace of development. This
implies the use of a high-level programming language and well-suited standard libraries.

We already have experience with C# and the XNA framework. The XNA framework has the
most essential features for use in creating a game engine, and the C# programming language is
suitable for creating prototypes, as it is a high-level memory managed language.

A great advantage is that we already know C# quite well, which enables us to be productive
early in the development process. We know the XNA framework well enough to ensure that it
does not have any technical limitations, which could obstruct the development of our engine.

For our editor we can also use C#. Using Windows Forms we will be able to create the Graphical
User Interface (GUI) quickly, because we have extensive experience with it.

The next section will elaborate on what the XNA Framework is.

4.2 The XNA Framework

Microsoft’s XNA Framework is a set of .NET libraries which allow developers to create games, that
will run on Windows, Xbox 3601 and Zune2, using C#. The main goal of the XNA Framework is
to simplify game development by removing tedious tasks like managing graphics device states,
creating a platform window to draw in and managing different input systems. Focusing the
developers on making games, not fiddling with native API code. Figure 4.1 on the following page
shows the basic structure of the XNA Framework.

1Microsoft’s gaming console.
2Microsoft’s portable media device.

Oblivious Rampaging Zombies And Monkeys 27

Chapter 4. Game Engine Selection

Figure 4.1: XNA Framework Overview. Games are built on top of the XNA Framework, which
wraps and abstracts away native platform specific APIs.

XNA Game Studio is the application used to develop XNA games. It is an extension of Microsoft
Visual Studio 2008 (for XNA version 3.0) or Visual Studio C# Express 2008. Amongst other
features, XNA Game Studio adds the ability to connect to an Xbox 360 or Zune, upload a game
and debug it while it runs on the device. Figure 4.2 on the next page shows a running instance
of Visual Studio 2008 with XNA Game Studio.

28 ORZAM

4.2. THE XNA FRAMEWORK

Figure 4.2: Visual Studio 2008 with XNA Game Studio. The selected item in the Solution Explorer
to the right is an FBX file included in the Content Project. It will be imported using
the Autodesk FBX importer and processed using XNA’s Model processor.

4.2.1 Components

The Core Framework consists of a number of .NET namespaces which provide a variety of fea-
tures. Most prominently it wraps platform specific APIs in managed .NET assemblies for easy
access and cross-platform use. It is the standard library on which all XNA games are based, and
its main components are:

Graphics wraps Direct3D 9 functionality. It has most of the functionality of Direct3D, but with-
out a fixed-function pipeline. This was left out to encourage use of the programmable-
pipeline and because the Xbox 360 does not support it. Furthermore, from Direct3D 10
and forward fixed-function pipeline is no longer supported.

Audio wraps XACT functionality and audio device handling. XACT is a cross-platform audio API
for Windows and Xbox 360. Sound authors use the XACT tool to create sound effects, which
when loaded into the game can be invoked using simple statements like Play(”Explosion”).

Input wraps XINPUT which is the cross-platform API which communicates with the Xbox 360
controller and the keyboard on Xbox or Windows. Input also provides easy access and use
of the Mouse on Windows. It requires no initialization, to get information about the current
state of any input device it is enough to call the appropriate GetState function.

Math provides often used math for games. Such as standard Vector, Matrix, Ray and Bounding-
Box implementations, as well as helper methods for creating standard Projection and View
matrices.

Storage provides the ability to read and write game data, such as save games and highscores,
in a uniform way on all platforms. While not very important for Windows development, it is
essential for Xbox 360, where it handles all hard disk and memory card access.

Oblivious Rampaging Zombies And Monkeys 29

Chapter 4. Game Engine Selection

The Extended Framework has two parts. One is the Application Model, which abstracts away
the platform and handles things like creating a window for the game, providing a game-loop,
managing correct timing. The Application Model also has the framework for reusable Game
Components. The idea is that the XNA community will develop several components which can
be easily shared and reused.

The other part is the Content Pipeline, the purpose of which is to provide a standardized way
of handling content, especially 3D content. It consists of a Content Project, to which content is
added and configured with an importer and processor. The importer reads and parses content
files into standardized content data structures, it can then pass the data to a processor that can
do additional processing on the content before serializing it into binary files for the game to read
during runtime.

Developers can create their own importers and processors to extend the functionality of the
pipeline such as adding support for additional file formats.

A central point of the Content Pipeline is that it does not force people to use specific ways of
handling content. Instead of providing a solution which fits all demands, it provides more basic,
generic solutions, which can be extended by the users of the framework.

For example, animation support is only partially implemented in XNA. The XNA standard model
importer can read the meshes, skeleton and materials, but the standard XNA model processor
does not support any output of animation content into the game. This requires the framework
users to extend the content processor, and decide on matters like the number of bones supported
and support for blending animations. This does require some work, but provides a large portion
of flexibility.

30 ORZAM

CHAPTER

5

The EGGS Engine

This chapter outlines the development of our engine ”EGGS” (EGGS is not an acronym) and the
main components we developed for it. The first step in developing the engine was to figure out
how much was already implemented in the XNA engine and what we could use from it. This is
detailed in section 5.1. Then we started implementing the requirements of the engine, each of
which has a section in this chapter:

Scene Graph: We need a way to represent objects in our game world. The scene graph will
describe the relationship between objects in our world and is a forest (a collection of trees)
of SceneNodes. The scene graph should also be able to represent information that has no
position in the game world. We also need to be able to save and load a scene graph.

Tile Engine: To satisfy the requirement of reusable content we implemented a tile engine. The tile
engine will be responsible for updating and rendering our world.

Random Level Generator: We want to randomize the levels in our game. The random level gen-
erator creates a new random tile based level.

Lighting and Shading: This section describes the techniques we use for lights and materials in
our game world.

Physics: The engine should be able to detect collisions between game objects and against the
world. XNA contains no suitable logic for resolving collisions or detecting collision in 2D, so
this must be implemented in our engine from scratch.

Animation: XNA has support for importing animation from 3D content files. It does not however
have any support for applying and rendering the animation. We need to implement a custom
content processor and a way to apply animation in-game.

Screen System: Finally, we need a way of navigating game states. The basic Application Model
of XNA has no state management, such as pausing the game and menu navigation. The
engine should have a generic system of navigatable screens each with its own draw and
update loop.

5.1 What XNA Provides

XNA is a rich framework with many built-in functions we can take advantage of when developing
our game engine. This section will describe the features we use extensively.

5.1.1 Application Model

The Application Model as described in section 4.2 on page 27 provides us with a simple structure
on which to base our game. When creating an XNA game we are presented with a class that
overrides the Game class in the XNA Framework.

This class has the following functions:

Initialize For doing any initialization before the graphics device is made ready for loading content.

LoadContent This method is called when the graphics device is ready to load device specific
content, for example textures.

UnloadContent When the game ends, this function can be used to unload all the content that is
not managed.

Oblivious Rampaging Zombies And Monkeys 31

Chapter 5. The EGGS Engine

Update(GameTime gameTime) is the update loop. It is called once every frame, unless the built-
in support for fixed timesteps is used, in which case update may be called several times
before Draw. The GameTime object contains information on how much time has passed
since last Update was called.

Draw(GameTime gameTime) Is where rendering code goes, the function is called after Update
and at the end of the function, the image drawn is shown on screen.

This class also has access to the Content Pipeline using a property called Content which is
a ContentManager object. The ContentManager has a Load< T >(string asset) function that
allows us to load content from the content project. The T is replaced with the type of the content
loaded, for example loading a 2D texture is done by:

Texture2D someTexture = Content.Load<Texture2D>("someTexture.png");

5.1.2 Graphics Device Management

The Game class also has a reference to a GraphicsDeviceManager, which manages the device
by abstracting away details and providing a simple interface for configuring the graphics device.
XNA takes the concepts of managed code from C# into graphics handling, by abstracting away
much of the memory management.

In Direct3D, a graphics device could be ”lost”, which means that the memory on the graphics
device was wiped clean, or taken over by another application. For a Direct3D application to
continue running when the device is lost, the device had to be reset. Resetting the device means
taking control again and setting it back to the settings the application needs. It also means
having to reload all device dependent resources, such as vertex buffers and textures, into the
memory of the graphics device. The entire process of losing a device, correctly resetting, recreat-
ing and loading resources has in XNA been managed, simplifying graphics device management
considerably.

5.1.3 Content Import

We take advantage of the Content Pipeline for the content our engine and game will use. XNA al-
ready has functions and classes handling the import of 3D models (without animation), textures,
bitmap fonts, sounds and more. The content is added to the content project and can be loaded
using the ContentManager.

5.1.4 Audio

XNA 3.0 has support for several audio formats and once imported the sounds can be played
using a simple function call. We use XNA’s built-in functionality for all our sound.

5.1.5 Input

We also take advantage of the input system of XNA. It provides easy access to keyboard, mouse
and gamepad inputs, through stateless static classes called Keyboard, Mouse and Gamepad.
Each class has a function called GetState which we can call to get the current state of all
buttons, triggers and directional inputs.

5.1.6 Math for 3D games

XNA has several helper classes and functions for creating 3D games, and we will be using these
extensively throughout the engine. This eases the development considerably as implementing
this kind of mathematics can be time-consuming, difficult and not as relevant for this semester
as knowing how to apply the math correctly.

32 ORZAM

5.2. SCENE GRAPH

Figure 5.1: The structure of the SceneNodes hierachy.

5.2 Scene Graph

The scene graph is the data structure in which we store our levels. The idea is to have a single
format we can use to save and load part of the world. This way a content author can create a
scene graph that has all information needed for a player to experience that part of the game,
including collision information and graphical content.

The scene graph is a forest (a collection of trees) of SceneNodes. All types of nodes extend the
SceneNode class:

Listing 5.1: A slightly simplified SceneNode Class
public class SceneNode
{

// This SceneNode’s parent
public SceneNode Parent { get; set; }

// A list of SceneNodes, adding a scene node to this list sets the Parent of the node to this node.
public NodeList ChildNodes { get; private set; }

public SceneNode(string name)
{

this.Name = name;
this.ChildNodes = new NodeList(this);

}

public virtual string Name { get; set; }

// The path is constructed using the names of Parent nodes.
public virtual string Path { get { return Parent != null ? Parent.Path + "." + Name : Name; } }

// All node types should override this function
// In this function nodes save themselves in an XmlElement
public virtual void PopulateXml(XmlElement element, XmlDocument document)
{

element.SetAttribute("Name", name);
}

// All node types should override this function
// In this function nodes load themselves from an XmlElement (created using the PopulateXml function)
public virtual void SetFromXml(XmlElement element)
{

if(element.HasAttribute("Name"))
Name = element.Attributes["Name"].Value;

}

// A Tag for game specific purposes
public object Tag { get; set; }

}

A class hierarchy of all types of nodes in the EGGS engine can be seen in appendix 5.1.

5.2.1 Saving a Scene Graph

The graph should be generic enough to be extensible with additional features and nodes in
the future, while still being robust enough that changes to the interface of some nodes do not

Oblivious Rampaging Zombies And Monkeys 33

Chapter 5. The EGGS Engine

invalidate all previously saved graphs. Therefore, all nodes have functions for saving themselves
into an XML element and loading themselves from an XML element. This simplifies the process
of saving an entire forest, as well as providing the kind of backward compatibility we would want
for our scene graph. Any elements that are not initialized in SetFromXml are simply given a
default value, and any properties that have the default value will not be written to the XML in
PopulateXml. The algorithm for saving the scene graph is as follows:

Listing 5.2: Saving a Scene Graph
public static XmlDocument CreateDocument(IEnumerable<SceneNode> node)
{

// Create an xml document in memory
XmlDocument document = new XmlDocument();
document.AppendChild(document.CreateXmlDeclaration("1.0", null, null));
// add a root element for the graph
XmlElement root = document.CreateElement("Scene");
document.AppendChild(root);

// for every node, recursively add it to the XML file
foreach (SceneNode n in node)
{

root.AppendChild(CreateElement(n, document));
}

// Return the populated XML document
return document;

}

public static XmlElement CreateElement(SceneNode node, XmlDocument document)
{

// Create an XmlElement for this node
XmlElement element = document.CreateElement(node.GetType().Name);

// Use the PopulateXml function to save Type specific information.
node.PopulateXml(element, document);

// Recursively create elements for child nodes.
foreach (SceneNode childNode in node.ChildNodes)
{

XmlElement childElement = CreateElement(childNode, document);
element.AppendChild(childElement);

}
return element;

}

5.2.2 Loading a Scene Graph

For loading the XML files we use .NET reflection, with which we can instantiate an object of a
specific type using only the name of the type. We decided all nodes should be uniquely identifiable
in the tree using a name. Thus for our loading algorithm to work, every type of node should have
a constructor that takes only the name of the node.

When loading we simply run through all elements in the XML file and attempt to instantiate
them using a type that is a SceneNode or a subclass of SceneNode:

Listing 5.3: Loading a Scene Graph from an XmlDocument
1 // This is the function we call to load a scene graph
2 public static NodeList LoadScene(XmlDocument loadDoc)
3 {
4 NodeList nodes = new NodeList(null);
5 LoadRecursively(nodes, loadDoc.DocumentElement.ChildNodes);
6 return nodes;
7 }
8
9 public static void LoadRecursively(NodeList targetList, XmlNodeList xmlNodes)

10 {
11 foreach (XmlNode xmlNode in xmlNodes)
12 {
13 XmlElement element = xmlNode as XmlElement;
14
15 // Not an element or doesn’t have a Name attribute, then ignore this element
16 if (element == null || !element.HasAttribute("Name"))
17 continue;
18
19 SceneNode node;
20
21 // If we can’t instantiate the node, then continue to next xml element

34 ORZAM

5.2. SCENE GRAPH

22 if (!NodeReflector.TryInstantiate(element.Name, element.Attributes["Name"].Value, out node))
23 continue;
24
25 // Set the Properties of this node from using the XML
26 node.SetFromXml(element);
27
28 LoadRecursively(node.ChildNodes, element.ChildNodes);
29
30 // Put it in our list
31 targetList.Add(node);
32 }
33 }

The NodeReflector which does the reflection can be found in the appendix C.1 on page 99.

5.2.3 Interesting Node Types

This section details a three interesting node types in our engine: The ObjectNode, the PolygonN-
ode and the PolygonWallNode.

Because we want the scene graph to contain information about our game world, we need some
nodes to have a position, rotation and scale. The ObjectNode has this information and is able
to apply its transformation to child ObjectNodes by having an Update function and a World
transformation matrix:

Listing 5.4: The ObjectNode Class
1 // Inherits from SceneNode and INodeUpdateable which identifies this class as having and Update function
2 public class ObjectNode : SceneNode, INodeUpdateable
3 {
4 public Vector3 Position;
5 public Vector3 Scale = Vector3.One;
6 public Quaternion Rotation = Quaternion.Identity;
7
8 public Matrix World;
9

10 public ObjectNode(string name) : base(name) { }
11
12 public override void PopulateXml(System.Xml.XmlElement element, System.Xml.XmlDocument document)
13 {
14 // Use SceneNode’s implementation of PopulateXml to save the objects Name
15 base.PopulateXml(element, document);
16
17 // Do not save the attributes if they have the default value
18 if(Position != Vector3.Zero)
19 XmlHelper.SetAttribute(element, "Position", Position);
20 if(Scale != Vector3.One)
21 XmlHelper.SetAttribute(element, "Scale", Scale);
22 if(Rotation != Quaternion.Identity)
23 XmlHelper.SetAttribute(element, "Rotation", Rotation);
24 }
25
26 public override void SetFromXml(System.Xml.XmlElement element)
27 {
28 base.SetFromXml(element);
29
30 // XmlHelper simply serializes and deserializes a few XNA framework types to and from a string

representation
31 if (element.HasAttribute("Position"))
32 Position = XmlHelper.ParseVector3(element.Attributes["Position"]);
33 if (element.HasAttribute("Scale"))
34 Scale = XmlHelper.ParseVector3(element.Attributes["Scale"]);
35 if (element.HasAttribute("Rotation"))
36 Rotation = XmlHelper.ParseQuaternion(element.Attributes["Rotation"]);
37 }
38
39 // Declare it virtual to ensure it can be overloaded by other node types.
40 public virtual void Update(GameTime dt, DrawInfo drawInfo)
41 {
42 // Create this node’s transformation matrix from its current information
43 World = Matrix.CreateScale(Scale) * Matrix.CreateFromQuaternion(Rotation) * Matrix.CreateTranslation(

Position);
44
45 // if this ObjectNode’s Parent is an ObjectNode, apply the parent’s transformation
46 ObjectNode p = Parent as ObjectNode;
47 if (p != null)
48 World *= p.World;
49 }
50 }

Oblivious Rampaging Zombies And Monkeys 35

Chapter 5. The EGGS Engine

The PolygonNode represents a polygon in 2D, it is the base representation of the static obstacles
in our game world. It is a subclass of ObjectNode, so it is possible to position it in the world:

Listing 5.5: The PolygonNode Class
1 public class PolygonNode : ObjectNode
2 {
3 public PolygonNode(string name) : base(name) { }
4
5 private List<Vector2> points = new List<Vector2>();
6 public List<Vector2> Points { get { return points; } }
7
8 public override void PopulateXml(System.Xml.XmlElement element, System.Xml.XmlDocument document)
9 {

10 base.PopulateXml(element, document);
11
12 // Loop through each point and add the point as a child of this XmlElement.
13 foreach (Vector2 point in points)
14 {
15 element.AppendChild(XmlHelper.CreateElement("Point", point, document));
16 }
17 }
18
19 public override void SetFromXml(System.Xml.XmlElement element)
20 {
21 base.SetFromXml(element);
22
23 // Run through all the children of this element, if the child is a point,
24 // then add it to the points list.
25 foreach (System.Xml.XmlElement cNode in element.ChildNodes)
26 {
27 switch (cNode.Name)
28 {
29 case "Point":
30 Points.Add(XmlHelper.ParseVector2(cNode));
31 break;
32 default:
33 break;
34 }
35 }
36 }

The PolygonWallNode is a subclass of PolygonNode. It has functions for generating 3D geometry
from the 2D points. The idea is that using our editor it should be possible to draw a level using
polygons and generate simple geometry from them.

PolygonWallNode creates a wall that runs along the edges of the polygons as well as a cap
for the wall. The height of the wall can be configured. The walls are generated using a simple
algorithm that first generates four vertices at every point along the polygon, two at floor level and
two at the specified height, a quad is created at every edge using a top and bottom of every point.
The geometry could be generated using only two vertices at each point, an IndexBuffer and a
TriangleStrip, but all four vertices of every edge quad must have equal surface normals for the
surface to appear flat.

The cap is created using a polygon triangulation algorithm. The algorithm used is called Ear
Clipping, and is described in Real-Time Rendering[1] along with other triangulation algorithms.

5.3 Tile Engine

A tile engine divides the world into a 2D grid. Each cell of the grid is quadratic, equally sized and
is called a tile. Each tile is associated with a scene graph.

In our tile engine there are five different types of tiles, based on the location of exits in the tile.
Combined with a rotation the five types describe all configurations of exits possible in a tile. The
five types are pictured on figure 5.2 on the facing page.

To make things interesting, we make more than one scene graph for every type of tile and
randomize which graph to use for every tile. A collection of these scene graphs used for a level is
called a tileset and each scene graph is called a tile asset.

5.3.1 Data Representation

The tilesets are saved into a single XML file as a scene graph. This allows us to reuse the save-
and loading scheme. The tileset scene graph contains a single TilesetNode for every tileset a

36 ORZAM

5.3. TILE ENGINE

Figure 5.2: The five types of tiles in our tile engine.

game has. A TilesetNode is a subclass of SceneNode and contains three properties:

Height is the default height a tiles in this tileset have. Because the tile-engine is designed for a
2D topography the height is merely a guideline for the content creators responsible for tile
scene graphs. (It is used by our editor)

TileSize is the width and height of a single tile. Every tile in the tileset should fit within a square
of this size.

ExitSize is the size of the exits in this tileset. Each type of tile has a specific amount of exits
that are centered on the edges. This parameter describes how wide the exits should be. An
example is pictured on figure 7.8 on page 75.

The XML file is added to the XNA content project and imported using our custom importer called
XmlTilesetImporter. The importer will read the XML file and look for the tile assets that are
associated with each tileset in a subfolder named after the tileset as such:

Content

Tilesets
Tilesets.xml
<Tileset name>

<tile name>.xml

The XmlTilesetImporter puts the tile assets and tilesets into a data structure, which will be
serialized into an .xnb file for XNA’s ContentManager to load during runtime. The import function
can be found in listing C.4 on page 104.

For the XmlTilesetImporter to correctly identify which tile type a specific tile asset contains,
the scene graph must contain a TileInfoNode. The TileInfoNode contains various information
about each tile asset, such as the tile type, whether or not the tile asset is special (for instance a
start or end tile), how to position the camera when the player enters the tile and what texture to
use as the floor of the tile.

5.3.2 Loading

Loading is done using the XNA ContentManager, it returns a TilesetWrapper object that has the
XmlDocuments for all tile assets and tilesets.

Each tile in our tile engine has a reference to a LevelTileNode. Each LevelTileNode is then
populated using a scene graph from a randomly selected tile asset in the tileset. The LevelTileN-
ode is an ObjectNode, which is rotated to fit the rotation of the tile, it also has some optimizations
for multi-directional shooters, such as having separate lists for dynamic and static obstacles, as
well as baking transformations of static objects in the scene graph.

5.3.3 Updating and Drawing

We need a way to update the tiles and draw them. The World matrices of all moving objects
must be updated in every frame. Using our tile engine, this is straightforward: We simply iterate
through the tiles, calling update on the LevelTileNodes. The LevelTileNode will then update the
dynamic objects that are associated with it.

Oblivious Rampaging Zombies And Monkeys 37

Chapter 5. The EGGS Engine

Figure 5.3: The desired output of the level generator - a box is a tile, and a line is an opening
between two tiles, an I inside the tile indicates a point of interest.

The same approach is used when drawing, the draw function is called on the LevelTileNodes of
interest and they will recursively call the draw function on all all drawable nodes in their scene
graph.

5.3.4 Optimization

For our tile engine to be able handle very large levels, attempting to update and render every
single tile in every frame would be naive. Instead we need to apply optimization.

Tile engines provide the first and most obvious optimization from its basic design as a spatial
data structure, as it divides the world into equally sized tiles. Using only a position we are able
to determine which tile in the level we are in. In a multi-directional shooter, we always look down
upon the world so there is always a direct relation between the cameras position and which tiles
we are able to see. The first optimization is to only update and draw tiles that are around the
position of the camera. Using the position of the camera (or player) we choose a tile of interest
and only render tiles that are up to a specific interest distance from there. Since we represent
our level in a two dimensional array we can simply iterate through the tiles that are within the
interest distance. This way an interest distance of two would draw a 5 ∗ 5 grid of tiles with the
interest tile in the middle.

Associating every tile with an axis-aligned bounding-box, would also allow us to cull1 tiles if
their boxes do not intersect with the camera’s view projection frustum. Further optimization can
be done by associating a bounding volume such as a bounding box to every renderable object
in each tile, and cull them using camera frustum culling. We do this for every updated node in
every updated tile in every frame.

5.4 Level Generator

A level generator was devised which recursively creates a maze-like graph of connected tiles. A
sketch of the desired output of the level generator can be seen in figure 5.3. An important point
to note is that every single tile in the level is connected - that is, it is a connected graph. This
means that, while playing, no areas of the level are inaccessible to the player.

1Culling is the process of discarding unneeded data or material.

38 ORZAM

5.4. LEVEL GENERATOR

Figure 5.4: The graph of a generated level of size 75 ± 25 and four points of interest.

The screenshot in figure 5.4 shows a visual representation of the output of the level generator.
The level can be seeded with points of interest. These are points inserted randomly with

constraints ensuring they will be distributed homogeneously across the maze. The idea is to be
able to place special tiles in appropriate positions.

The level generator depends on three vital enumerations to work, as presented in listing 5.6. Ro-
tation is used to describe which orientation a tile has. The TileType describes the five possible
types of tiles shown on figure 5.2 on page 37. EdgeState is used internally to describe which of
the four edges are passable.

When a LevelTile is created, all four edges are marked as None, and once the LevelGenerator
finishes generating a level, all edges are either Edge or Blocked.

Listing 5.6: The three level generator enumerations.
// The numbers are rotation in degrees
public enum Rotation
{

Up = 0,
Right = 90,
Down = 180,
Left = 270

}

public enum EdgeState
{

None,
Edge,
Blocked

}

public enum TileType
{

End,
Hallway,
Corner,
Tintersection,
Crossing

}

Oblivious Rampaging Zombies And Monkeys 39

Chapter 5. The EGGS Engine

5.4.1 The LevelTile class

The representation of a tile in the level generator is done through the LevelTile class, the signa-
ture of which can be seen in listing 5.7.

Listing 5.7: LevelTile class signature.
public class LevelTile
{

public SpecialTileNodeType SpecialType { get; set; }

public Rotation Rotation { get; private set; }
public TileType TileType { get; private set; }

public EdgeState TopEdge { get; set { this.TopEdge = value; UpdateTypeAndRotation(); } }
public EdgeState RightEdge { get; set { this.RightEdge = value; UpdateTypeAndRotation(); } }
public EdgeState BottomEdge { get; set { this.BottomEdge = value; UpdateTypeAndRotation(); } }
public EdgeState LeftEdge { get; set { this.LeftEdge = value; UpdateTypeAndRotation(); } }

public LevelTile TileAbove { get; set; }
public LevelTile TileRight { get; set; }
public LevelTile TileBelow { get; set; }
public LevelTile TileLeft { get; set; }

public bool IsPointOfInterest { get; set; }
public int X { get; private set; }
public int Y { get; private set; }

public LevelTile(int x, int y)

public void UpdateTypeAndRotation()
}

When constructing a new tile, it is positioned in the level using a 2D coordinate. The coordinate
cannot be changed later.

Changing the state of an Edge in the tile, will update the Rotation and TileType to match the
new configuration. The LevelTile has a reference to its four neighboring tiles, this is purely for
convenience. Finally, IsPointOfInterest designates the LevelTile as a point of interest.

Level Generation The following listing contains the signature of our level generator:

Listing 5.8: LevelGenerator and Level Information Region Signature
public class LevelGenerator
{

private LevelTile[,] LevelTiles { get; set; }

// A list containing all tiles in the level.
public List<LevelTile> CreatedTiles { get; set; }

// The points of interest in this level.
public List<LevelTile> PointsOfInterest { get; set; }

// The constructor which will upon instantiation generate a new level
public LevelGenerator()

// A trimmed multi array containing the level
public LevelTile[,] GetLevelTileArray(int padding)

// Generates a randomized level
public void GenerateLevel(int averageTiles, int allowedDeviation)

// Generates a randomized level, uses the baselevel list as a starting point
public void GenerateLevel(int averageTiles, int allowedDeviation, List<LevelTile> baseLevel)

// Creates a LevelTile at the specified coordinates
private void CreateTile(int xPos, int yPos)

// Ensures graph sanity.
private void FindForcedEdges(int x, int y, LevelTile theTile)

}

To start generating a new level, we call one of the GenerateLevel functions. There are two
possibilities available when requesting a new level to be generated: Either we start with an
empty level, we use a list of LevelTiles and generate a level from these.

The GenerateLevel function will reset the generator and call CreateTile. CreateTile is recursive
and will end when enough have been generated or it becomes unable to create more tiles. The
inner workings of CreateTile is shown in listing C.2 on page 100.

40 ORZAM

5.4. LEVEL GENERATOR

Figure 5.5: A graphical representation of three recursions of the level generator, which in this
case results in seven tiles. A line going out of the side of a tile indicates an edge,
while a line going perpendicular to the side shows a blocked edge. If two tiles are
connected by a line, they are both marked as having an edge going between them.

FindForcedEdges examines the neighboring coordinates around a target tile. If there is a tile
at the coordinate the edge going from the target tile to the neighboring tile will be set to the same
type as the edge going from the neighboring tile to the target tile.

Sample Run of CreateTile Figure 5.5 shows twenty potential steps of the level generator. The end
situation in the figure is either a failed run, caused by randomizer choosing primarily blocked
edges, or a completed run with a maximum of 7 tiles, for example using GenerateLevel(5, 2).

GenerateLevel takes the first situation into account when creating levels, by forcing a mini-
mum number of tiles to be created. This is what the allowedDeviation argument is used for.
The randomization of new edges takes into account that there is a maximum number of tiles
available for the level. This is the reason for the randomization of the order in which new edges
are assigned, which avoids a level tending to curve in one or the other direction, depending on
the order new edges would be assigned in.

Below is a description of each of the twenty steps:

1 CreateTile is called with the coordinates (0, 0) from the GenerateLevel() function. The function
creates a new tile in that position.

2 FindForcedEdges does nothing on this first run, as the tile has no neighbors. Step 2 shows the
randomization of the tile’s four edges - the numbers indicate the order in which the edges
are created, they also indicate the order in which new tiles are created (notice blocked edges
are not numbered).

Oblivious Rampaging Zombies And Monkeys 41

Chapter 5. The EGGS Engine

3 CreateTile is called recursively, with the coordinate (x + 1, y), meaning the tile immediately to
the right of the first one.

4 FindForcedEdges sets the EdgeState of the left edge of tile 2 to Edge.

5 The remaining edges of tile 2 are randomized, with the right side being the first created edge.

6 A new tile along edge 5 is created by calling CreateTile as before with (x + 1, y).

7 FindForcedEdges again sets the left edge of the tile to Edge.

8 The edges on the new tile are randomized, this time resulting in three blocked edges. Ending
this recursive branch.

9 Thus returning to tile 2, CreateTile is called on the edge going upwards which is next, and has
the coordinate (x, y + 1).

10 FindForcedEdges in this new tile sets the bottom edge to Edge.

11 Randomization of the edges in the tile, resulting in only one new edge being assigned going
up.

12 CreateTile is called with (x + 1, y), creating the new tile to the right.

13 FindForcedEdges finds both the edge going towards the tile from the left, but also the blocked
edge in the tile underneath, assigning both of those.

14 Randomizing edges assigns blocked edges to all remaining edges, ending the branch.

15 Thus completed all the way along the first of the created edges from tile 1, CreateTile is now
called along the next of the edges in the first tile, which is the one above or (x, y + 1).

16 FindForcedEdges finds both the edge going downwards and the blocked edge in the tile to the
right and assigns both of those to the correct edges.

17 Randomizing edges finds that all new edges should be blocked and the branch returns to the
first tile.

18 CreateTile is called for the tile below the first or (x, y − 1).

19 FindForcedEdges finds only the edge going upwards, and assigns the correct EdgeState.

20 Randomize edges finds that all edges should be blocked in this new tile. All edges are now
assigned, and the first CreateTile call in the call stack returns to the GenerateLevel() func-
tion.

5.5 Lighting and Shading

For our engine we wanted to explore what we could do with lighting, as it is an effective way to
create more compelling visuals without authoring large amount of complex content. We wanted to
have several dynamic objects and lights on screen, mainly to investigate the challenges involved
in such a rendering system and how to optimize it.

There are three basic ways of having multiple geometries lit by multiple lights:

Single-Pass lighting in which geometry has a single shader, the shader is given a list of lights that
affect the object and the shader must light the object correctly in one pass. Because of the
limited instruction count of shaders, this technique would only allow us to have a few light
sources per object. As Catalina Zima [10] points out, the samples on the XNA Creator’s
Club [5] can only handle up to 8 lights.

42 ORZAM

5.5. LIGHTING AND SHADING

Multi-Pass lighting in which all geometry is drawn once for every light source that affects it. The
challenge of multi-pass lighting is to figure out which geometry is affected by which lights
and batch them in a way that allows the shader to render multiple lights and geometry
in a single pass. The worst case is that the amount of draw calls reaches the number
of geometries multiplied with the number of light sources, stressing the geometry stage
unnecessarily as the vertex transforms of the objects are done multiple times.

Deferred Shading in which the geometries are drawn once, but instead of applying lighting calcu-
lations when drawing the geometry, various properties of the object is written to a number
of framebuffers2. The properties are variables that are needed to calculate lighting, such
as color, normals and position in world space. When all geometries have been drawn, the
lights are applied as a 2D post processing effect using the data from the framebuffers.

Of the three techniques Deferred Shading is the most interesting. It is very simple to manage
as we do not need to worry about which lights hit what geometry, as well as achieving very
impressive visuals and requiring us to delve a little deeper into graphics programming than the
other lighting approaches. Finally, it requires only one material for every piece of geometry in
our world, which means once the basic shader is in place we will not have to make more.

5.5.1 Deferred Shading

Our deferred shading algorithm is based on Shawn Hargreaves presentation at Game Developers
Conference 2004[4], and Catalina Zimas article on implementing it in XNA[10].

The main component of a Deferred Shading system is the Geometry Buffer (G-Buffer), which
is the collection of framebuffers on which we draw the properties of every piece of geometry. The
information we store in the G-Buffer is:

Color The diffuse color of our geometries, this is often just the texture of an object.

Specular Properties For the specular component, we want to save specular power and intensity
for every pixel. We use one intensity value for specular instead of a color, for simplicity.

Normal The surface normals of geometries are required for the diffuse and specular components.

Depth By saving the depth (distance from the camera) of each pixel, we can calculate the world
position of a pixel using an inverted V iew ∗ Projection matrix and the screen space coordi-
nates of the pixel. We also need this for diffuse and specular.

When rendering a geometry we write these values to three different framebuffers, called Ren-
derTargets. We could render the geometry three times, once for each RenderTarget, but we can
also make use of a feature called Multiple Render Targets (MRTs), which allows us to render to
all three targets at once. One concern is that only relatively new graphics devices support MRTs
(According to Zima[10], this means at least an ATI Radeon 9500 or NVIDIA GeForce from the
6000 series). For this study project this is acceptable, but for production code we would want to
implement a fallback to a simpler technique such as Single-Pass lighting.

After figuring out what to save, we need to choose how. When using MRTs all our RenderTar-
gets has to have the same bit-depth, which basically narrows the choice of representation down
to 32bit, 64bit or 128bit per-pixel per-target. Increasing the precision improves the quality of our
lighting, but is also more expensive in both memory and computations. We chose to use 32bit
precision, because the techniques we use require no more than that. Were we to implement High
Dynamic Range lighting techniques for example, we would have reconsidered switching to 64bit
floating point buffers.

For Color we use the Color format in XNA which is the standard 8bit for each of red, green,
blue and alpha. In the alpha channel we save the specular intensity. For Normals we also use
the Color format, saving the x, y and z components of the normal in red, green and blue, in the
alpha channel we save the specular shininess power. Finally we use the Single format in XNA
for depth, which is simply a 32bit precision floating point number.

2A framebuffer is an image buffer. It contains an entry for every pixel in an image.

Oblivious Rampaging Zombies And Monkeys 43

Chapter 5. The EGGS Engine

We save values in the color alpha channel because we will not be able to use alpha blending
when using a deferred shader. The reason alpha blending is troublesome is that we save the
lighting properties at every pixel. When using alpha blended objects we would need information
about two different objects at the same pixel: The transparent object and the object behind it.
The colors can be blended, but we can only save one normal, and one depth at each pixel.

There are techniques for using alpha blending with deferred shading, but they are beyond the
scope of this report. Refer to Shawn Hargreaves presentation for more information[4].

5.5.2 Clearing the G-Buffer

Before we start rendering we want to clear all our RenderTargets by setting their default values.
This is done using a simple shader that outputs the same value for every pixel. To render
every pixel on screen we use a full-screen quad, just like when applying post processing effects
as mentioned in section 3.2.3 on page 18. Although before this is done we need to set the
rendertargets as active on the graphics device:

Listing 5.9: Setting the active RenderTargets in XNA
1 // We assume here that the RenderTargets have already been instantiated
2 private void SetGBuffer(GraphicsDevice graphicsDevice)
3 {
4 graphicsDevice.SetRenderTarget(0, colorRT); // The Color RenderTarget2D
5 graphicsDevice.SetRenderTarget(1, normalRT); // The Normal RenderTarget2D
6 graphicsDevice.SetRenderTarget(2, depthRT); // The Depth RenderTarget2D
7 }

The shader is a HLSL file we load using XNA’s ContentManager. The content of the shader is:

Listing 5.10: ClearGBuffer.fx
1 // Because we are using a full screen quad, we simply pass the position on
2 // The upper left corner of the full screen quad is (-1, -1, 0) and the lower right is (1,1,0).
3 // This fits into the screen-space unit cube.
4 float4 VSPassthrough(float3 Position : POSITION0) : POSITION0
5 {
6 return float4(input.Position,1);
7 }
8
9 // The pixel shader outputs 3 color values, one for each target

10 struct PSOutput
11 {
12 float4 Color : COLOR0;
13 float4 Normal : COLOR1;
14 float4 Depth : COLOR2;
15 };
16
17 // The clear function
18 PSOutput ClearGBuffer()
19 {
20 PixelShaderOutput output;
21
22 // Black for the color buffer, no specular intensity
23 output.Color = 0.0f;
24
25 // For normals we are saving a signed value in an unsigned data type
26 // [0-0.5[is the negative range, 0.5 is zero and]0.5-1] is the positive range.
27 // So we set the default value of the normals to 0.5 (or zero :)).
28 output.Normal.rgb = 0.5;
29
30 // In alpha we save specular power, this should be zero
31 output.Normal.a = 0.0f;
32
33 // Give depth a default value
34 output.Depth = 1.0f;
35
36 return output;
37 }

5.5.3 Rendering Geometry to the G-Buffer

Rendering to the G-Buffer is very similar to the usual way of forward rendering (doing the lighting
in one pass), except instead of doing the lighting calculations now, we simply save the variables
needed to do the lighting. Here is what we do in HLSL:

44 ORZAM

5.5. LIGHTING AND SHADING

Listing 5.11: RenderGBuffer.fx

1 float4x4 World;
2 float4x4 View;
3 float4x4 Projection;
4 float specularIntensity = 0;
5 float specularPower = 2;
6
7 // Geometry has one texture, no multitexturing
8 texture Texture;
9 sampler diffuseSampler = sampler_state { Texture = (Texture); };

10
11 struct PixelShaderOutput { ... } // is the same as in ClearGBuffer.fx
12
13 struct VertexShaderInput
14 {
15 float4 Position : POSITION0;
16 float3 Normal : NORMAL0;
17 float2 TexCoord : TEXCOORD0;
18 };
19
20 struct VertexShaderOutput
21 {
22 float4 Position : POSITION0;
23 float2 TexCoord : TEXCOORD0;
24
25 // Using TEXCOORD for normals and depth allows the hardware to interpolate them between vertices
26 float3 Normal : TEXCOORD1;
27 float2 Depth : TEXCOORD2;
28 };
29
30 // This function is very similar to the standard geometry stage vertex shader (see section 2.2.2)
31 VertexShaderOutput VertexShaderFunction(VertexShaderInput input)
32 {
33 VertexShaderOutput output;
34 float4 worldPosition = mul(input.Position, World);
35 float4 viewPosition = mul(worldPosition, View);
36 output.Position = mul(viewPosition, Projection);
37
38 // Pass texture coordinates directly to the PS.
39 output.TexCoord = input.TexCoord;
40
41 // Transform the normals into world space
42 output.Normal = mul(input.Normal, World);
43
44 // We save the z and w components of our position
45 // We will be able to get the actual depth value by dividing z by w
46 // But first we want the hardware to interpolate the numbers so we can get a value for each pixel
47 output.Depth.x = output.Position.z;
48 output.Depth.y = output.Position.w;
49 return output;
50 }
51
52 PixelShaderOutput PixelShaderFunction(VertexShaderOutput input)
53 {
54 PixelShaderOutput output;
55
56 // Get the diffuse texture color.
57 output.Color = tex2D(diffuseSampler, input.TexCoord);
58
59 // Set the specular intensity (the value can be set from application stage)
60 output.Color.a = specularIntensity;
61
62 // Save the normal, but first we must renormalize it and move it from the [-1,1] range to [0,1]
63 output.Normal.rgb = 0.5f * (normalize(input.Normal) + 1.0f);
64
65 // Set the specular power (the value can be set from application stage)
66 output.Normal.a = specularPower;
67
68 // Output the actual depth value of this pixel.
69 output.Depth = input.Depth.x / input.Depth.y;
70
71 return output;
72 }

This is also where we would want to add Skinned Animation. We could add this as an extra
technique and use that technique when rendering skinned geometry. Refer to section 3.3 on
page 22 for further explanation, as this method is directly applicable to this shader.

Oblivious Rampaging Zombies And Monkeys 45

Chapter 5. The EGGS Engine

5.5.4 Applying Lighting

Once we have finished drawing everything to our G-Buffer, we are ready to start lighting the
scene. This is the most interesting part of the Deferred Shading technique.

We will be using local point lights (see section 3.2.4 on page 19) that have linear attenuation,
which means they lose intensity proportionally to the distance to the lit surface.

We apply lighting by first drawing all the lighting calculations to a RenderTarget and then
combining the light buffer with our color buffer for the final image. The contributions of each
light is added to the final light buffer one at a time, this means we need to set the graphics
device to add the colors of overlapping pixels, instead of replacing the current color which is
the standard behavior. For more information on Alpha Blending and additive rendering refer to
Real-Time Rendering[1].

To avoid having to process all pixels on the screen for every light, we use a sphere model to
represent a light. The sphere is drawn in world space at the location of the light with a size that
corresponds to the reach of the light. This way we will only process the pixels that have a chance
of being hit by our lights. This also has the effect that drawing a lot of small lights spends as
much time in the rasterizer stage as drawing one big light which covers the same amount of
pixels.

Before we draw the lights we need to resolve our G-Buffer, by resolving the buffer we get
three textures that have the contents of our framebuffers. We send these textures along with the
settings of our light to the point light shader. The following piece of HLSL code is the pixel-shader
for drawing a single point light.

Listing 5.12: Pixel-Shader of PointLight.fx
1 // This is an inverted View * Projection matrix
2 // We use this to go from screen-space back to world-space
3 float4x4 InvertViewProjection;
4
5 float3 lightPosition; // The position of the pointlight
6 float radius; // The reach of the point light
7 float3 Color = 1.0f; // Color of the light
8
9 // Now we need our G-Buffer

10 texture colorMap;
11 sampler colorSampler = sampler_state { Texture = (colorMap) ... };
12
13 // NOTE: The normalSampler and depthSampler are set to use nearest neighbor
14 // It would not make any sense to interpolate and could skew our results.
15 texture normalMap;
16 texture depthMap;
17 sampler normalSampler = sampler_state { Texture = (normalMap); ... };
18 sampler depthSampler = sampler_state { Texture = (depthMap); ... };
19
20 // Is the width of half a pixel as set from the Application Stage
21 // halfPixel = new Vector2(0.5f/(float)lightRT.Width, 0.5f/(float)lightRT.Height);
22 float2 halfPixel;
23
24 // screenPosition is the interpolated screen-space position of the current pixel
25 float4 PixelShaderFunction(float4 screenPosition : TEXCOORD0) : COLOR0
26 {
27 // Retrieve the view unit cube x,y coordinates
28 screenPosition.xy /= screenPosition.w;
29
30 // We need to use the screen position to do lookup in our textures
31 // The screen coordinates are [-1,1] we change this to [0,1]
32 float2 texCoord = 0.5f * (float2(screenPosition.x,-screenPosition.y) + 1);
33
34 // Because texels are read from the center and pixels from upper left corner
35 // we need to offset by half a pixel. Refer to Real-Time Rendering for details.
36 texCoord +=halfPixel;
37
38 // Sample the normal map.
39 float4 normalData = tex2D(normalSampler,texCoord);
40
41 // Transform the normals into [-1,1] again
42 float3 normal = 2.0f * normalData.xyz - 1.0f;
43
44 // Get specular information from the normal and color buffers
45 float specularPower = normalData.a * 255;
46 float specularIntensity = tex2D(colorSampler, texCoord).a;
47
48 // Sample Depth Map
49 float depthVal = tex2D(depthSampler,texCoord).r;
50

46 ORZAM

5.5. LIGHTING AND SHADING

51 // Compute world space position by transforming a screen-space point to world space
52 float4 position = float4(screenPosition.xy, depthVal, 1);
53
54 position = mul(position, InvertViewProjection);
55 position /= position.w; // factor w out again
56
57 // Create the light vector, we need for Phong shading
58 float3 l = normalize(lightPosition - position);
59
60 // Compute the linear attenuation.
61 float attenuation = saturate(1.0f - length(l) / radius);
62
63 // Compute the diffuse light
64 float diffuseFactor = max(0,dot(normal, lightVector));
65 float3 diffuseLight = diffuseFactor * Color;
66
67 // Compute specular lighting using the reflect vector method
68 float3 r = normalize(reflect(-lightVector, normal));
69 float3 eyeVector = normalize(cameraPosition - position);
70 float specularLight = specularIntensity * pow(saturate(dot(r, eyeVector)), specularPower);
71
72 // Apply attenuation and return. Notice we do not apply the specular light yet!
73 return attenuation * float4(diffuseLight.rgb, specularLight);
74 }

5.5.5 Putting It All Together

After rendering all our lights we are ready to combine our Color buffer with the Light buffer. We
simply draw a full screen quad as we have done before and use this shader:

Listing 5.13: Pixel-Shader of CombineFinal.fx

1 float4 PixelShaderFunction(float2 texCoord : TEXCOORD0) : COLOR0
2 {
3 // Get the diffuse color from color buffer
4 float3 diffuseColor = tex2D(colorSampler, texCoord).rgb;
5
6 // Get the light from our light buffer
7 float4 light = tex2D(lightSampler, texCoord);
8
9 // Put it together, modulate the diffuse color with the light and add specular light

10 return float4((diffuseColor * light.rgb + light.a),1);
11 }

The final result as well as the normal, color and light buffers can be seen in figure 5.6 on the
next page.

Oblivious Rampaging Zombies And Monkeys 47

Chapter 5. The EGGS Engine

Figure 5.6: Deferred Shading, upper left is the final combination, upper right is the normal
buffer, lower left is the color buffer and lower right is the total light contribution
from several point lights.

5.6 Physics

The physics system in the EGGS engine is a simple collision detection and response system. The
2D physics system is designed to be used in-game, while the 3D collision detection system is for
the editor.

5.6.1 2D collision system

The game engine provides a simple 2D physics system that can detect collision between the
following objects:

• Circle/Circle

• Circle/Polygon

• Rays

For Circle/Circle and Circle/Polygon collisions the collision detection system will provide feed-
back on how to resolve the collision.

5.6.2 Circle / Circle collision

Intersection between two circles can be tested by comparing the distance between the two circle’s
centers with the sum of their radii. If the sum of the radii is greater than the distance between
the two centers the circles must intersect. The collision can be resolved by moving one of the
circles until the distance between the two centers is greater than the radii sum. For a more
detailed description on how this can be done see David Eberly’s essay[3].

48 ORZAM

5.6. PHYSICS

Figure 5.7: Circle/line segment distance.

5.6.3 Circle / Polygon

Intersection between a circle and a polygon is done in the following way: First it is checked
whether the center of the circle is inside the polygon. If this is the case there is a collision and
the check is done. If the circle’s center is outside the polygon the distance from the circle’s center
to each of the line segments in the polygon is calculated. If any of these distances are found to
be between zero and the radius of the circle there will be a collision between the circle and that
line segment. The implementation in the game engine speeds things up by making a bounding
rectangle around each polygon and checking the circle against this before doing the relatively
expensive check against the whole polygon.

The circle inside polygon test is done by shooting a ray out from the circle’s center and check
how many of the polygon’s line segments it crosses.

The idea behind this approach is that a ray starting outside the polygon will have to cross the
polygon wall an even number of times, one when it enters, one when it exists, and two for each
time it exits and enters the polygon again. Since the ray goes on for infinity it is impossible for
it to enter the polygon without ever exiting it again and the number of crossings will always be
even. However if the ray starts inside the polygon it will not get a crossing from entering the
polygon and the number of crossings will therefore always be odd. It can therefore be decided
whether the circle’s center is inside the polygon by making a ray that starts at the circle’s center
and count how many of the polygon’s line segments it intersects. The ray/line segment tests
needed to do this has been sped up by choosing the direction of the ray to be along the positive
X-axis, allowing for a lot of early out cases in the ray/line segment test.

Figure 5.7 illustrates the 3 cases that must be considered when calculating the circle/line
segment distance: When the circle’s center is before the start point of the line segment (C1),
between the start and end point (C2), or after the end point (C3). To figure out which is the case,
a vector from the start point of the line segment to the circle’s center is calculated and projected
onto the vector from the start to the end point of the line segment. If the length of the projection
is less than zero, the circle’s center is before the start point. If the length of the projection is
greater than the length of the line segment the circle’s center is after the end point. Otherwise it
will be between the start and end point.

If the center of the circle is before the line segment the distance is calculated by taking the
distance from the start point of the line segment to the circle’s center and subtracting the radius.
Distance to the end point is calculated in a similar manner. If the circle’s center is between the
start and end point the distance is found by making a vector from the line segment’s start point
to the center of the circle. This vector is then projected onto the normal for the line segment. The
distance is then found by taking the length of this projection and subtracting the circle’s radius.

When calculating circle/line segment distance in a polygon/circle intersection test a bit of opti-
mization can be done. If the circle’s center is found to be after the end point of the line segment,

Oblivious Rampaging Zombies And Monkeys 49

Chapter 5. The EGGS Engine

the distance test can be skipped, since the end point of the current line segment will also be the
start point of the next segment, and the test will therefore be carried out there if necessary.

The engine’s collision system resolves polygon/circle collisions by moving the circle until the
collision has been resolved. If a collision was found with a line segment start or end point the
direction of the resolving movement will be along the vector from the colliding point to the circle’s
center and if the collision was with the line segment itself the direction will be along the normal
to the line segment. How far the circle has to move can be calculated from the distance checks
used in the collision detection.

5.6.4 2D Rays

Ray collision testing has been implemented according to the theory found in David Eberly’s
essay[3]. We can test a ray against a circle or polygon. The system can provide feedback on
where the ray collision occurred and the normal to the edge hit at the collision point.

5.6.5 3D collision system

The game engine provides collision detection for the following objects in 3D:

• Frustum/point

• Frustum/Oriented Bounding Box

• Ray/Oriented Bounding Box

• Oriented Bounding Box/Oriented Bounding Box

The intersection tests used in 3D collision detection has been implemented according to the
theory found in Essential Mathematics for Games & Interactive Applications[7].

5.6.6 Tile Engine Collision System

The engine can do collision detection and resolving for dynamic and static objects in a tile based
2D game world.

Collision handling is done by finding all interesting dynamic objects and for each of them test and
resolve collisions with other nearby dynamic objects. Interesting dynamic objects are defined as
any dynamic objects in one of the 5 ∗ 5 tiles square surrounding the tile coordinates which have
cameras in them. Nearby dynamic objects are defined as the dynamic objects in an object’s own
tile or any neighboring tile which the object’s bounding circle intersects with. When a collision
is detected it is resolved immediately, moving both of the colliding objects before continuing with
collision handling.

When all dynamic versus dynamic collision is done each interesting dynamic object will be
checked for collisions with nearby polygons. Again nearby polygons are defined as polygons
in the same tile as the object itself and in any neighbor tiles that the object’s dynamic circle
intersects with. Whenever a collision with a polygon is detected it is resolved immediately, moving
the dynamic object before collision handling continues.

The collision system also provides an event, OnCollision, that is called each time one object is
detected to collide with another. The game logic can hook up to this event to perform special
actions on certain collisions. The delegate used for the event is shown in listing 5.14. It should
be noted that collisions between two dynamic objects, A and B, will be registered twice with the
event, once as a collision between A and B and once as a collision between B and A. Collisions
between dynamic objects and polygons will be registered with the dynamic object as the first
argument and the polygon as the second argument.

Listing 5.14: OnCollision Event
public delegate void OnCollision(ObjectNode a, ObjectNode b);

50 ORZAM

5.7. ANIMATION

5.7 Animation

As mentioned earlier in the section on XNA 4.2 on page 27, it has only partial support for
animations. This section examines how to add this functionality. Furthermore, it describes the
process of exporting formats supported by XNA from the 3D modeling packages we have used.

The XNA Content Pipeline already supports import of a number of different file formats, most
prominently are the DirectX (.x) and Autodesk FBX (.fbx) formats.

For the models to be imported correctly into XNA we have a few requirements for the formats.
First, XNA uses a right-handed Cartesian coordinate system with the Y -axis being up. This
causes a few problems because by default, an .x file is left-handed with the Z-axis as up, and
while FBX is right-handed, it also has the Z-axis as the up axis by default. So we need the
exporters to be able to tweak the output to match the coordinate system of XNA. We would also
like the exporters to refer to textures and effects by relative paths, so we can distribute them with
ease. The exporters should also be able to handle export of animations and skinning information.

5.7.1 Exporting in Autodesk 3D Studio Max

Developed by Autodesk, 3D Studio Max has great FBX support as it supports the newest version:
FBX200900. The latest XNA release 3.0 has improved support for this version, including import
of multiple textures and settings, as well as correctly importing the settings of shader effects
assigned directly from 3D Studio Max. The dialog for the FBX exporter is pictured in figure 5.8.

Figure 5.8: 3D Studio Max FBX Exporter Dialog: Example settings for correct export to XNA 3.0.

To ensure the export sizes matches the coordinate system of XNA, we had to set the 3D Stu-
dio Max system units to Centimeters. In 3D Studio Max this is done in Customize→Units
Setup→System Unit Setup where you set ”1 Unit = 1,0 Centimeters” using the drop down box.
This will probably vary depending on a machine’s locale settings. We tested it in XNA by export-
ing boxes that were 10∗10∗10 units, drawing a box of that size in XNA using primitives manually,
importing the models and comparing the size.

In the exporter we set the Up Axis to ”Y-up” and the type to binary. ASCII output is useful for
debugging, but there are serious localization issues: On our Danish Windows machines the FBX

Oblivious Rampaging Zombies And Monkeys 51

Chapter 5. The EGGS Engine

exporter uses commas as decimal points, which interferes with the comma separation used to
discern numbers, making the export useless.

When exporting animation using FBX, it is only possible to export a single track, but a tool
called MotionBuilder3 can be used to split the single time-line into several animations if needed.

Our engine does not interpolate transforms between keyframes, so we make use of the Bake
Animation feature, which creates a keyframe at each frame or otherwise specified step length.
By not interpolating at runtime we sacrifice space and fidelity for speed.

3D Studio Max does not have a native .x file exporter. However, there are a number of third
party plug-ins available. One is kW X-Port by Jon Watte[8] pictured on figure 5.9, which we
used because it is simple and has all the features we need. kW X-port also allows us to have
multiple animation tracks without using an additional tool. It does support export of custom
shader effects applied in 3D Studio Max like FBX, though it does not support multiple textures
on materials. kW X-Port does not use system locale settings for its ASCII export, so floating
point number decimals are periods and not commas on our systems. Exporting .x files using kW
X-Port is the method we used for most of our models, including our skinned models.

Figure 5.9: kW X-Port: Example settings for correct export to XNA 3.0 with animation and skin-
ning.

5.7.2 Exporting in Blender

Blender supports both .x and FBX with the settings we require. We have only been using blender
to export static models without animation, which worked without any incident. Both exporters
are built into Blender and are shown on figure 5.10 on the next page. Because Blender is open
source it is entirely possible to modify the exporters to any specific needs.

3http://usa.autodesk.com/adsk/servlet/index?siteID=123112\&id=6837710

52 ORZAM

http://usa.autodesk.com/adsk/servlet/index?siteID=123112\&id=6837710

5.7. ANIMATION

Figure 5.10: Blender Export Dialogs: Example settings for correct export to XNA 3.0.

5.7.3 Exporting in Softimage|XSI

The .x exporter in XSI is very basic. It does not allow you to export the models as right-handed,
and it also does not allow you to set the Y -axis as up. This means that to use .x files exported
from XSI, we would have to preprocess them before using them in XNA. The exporter is pictured
on figure 5.11.

Figure 5.11: XSI .x Export Dialog: Does not allow us to change the handedness to right.

XSI also has an FBX exporter, which is pictured on figure 5.12 on the next page. At the time of
writing however, the latest version of FBX supported is FBX200611, which is a mismatch with
XNA 3.0. It is possible to import the older FBX versions, but none of the advanced features are
supported. The FBX exporter does not offer as many options as the one found in 3D Studio Max,
but models exported using it will work correctly with XNA.

Oblivious Rampaging Zombies And Monkeys 53

Chapter 5. The EGGS Engine

Figure 5.12: XSI FBX Export Dialog: Example settings for correct export to XNA 3.0.

On several occasions we exported models from XSI to OBJ file format and imported those into
3D Studio Max, where we would reapply materials and export to FBX or .x to ensure compatibility
with XNA.

5.7.4 Importing Models into XNA

The Content Pipeline of XNA provides us with parsers and simple processors for importing .FBX
and .x files. We do not have to worry about the specific syntax of the files, just add the files to
the Content Project and select the appropriate importer. The standard processor encapsulates
the model data into the Model class, which has four properties:

Bones is a collection of ModelBone objects, which describe the relationships between the differ-
ent bones in the model and the ModelMeshes that are related to them. It is what contains
the hierarchy of the Model, including transformations.

Meshes is a collection of ModelMesh objects, which are the renderable parts of the model. Each
ModelMesh has a number of different MeshParts each with their own Effects and geometry
in the form of a VertexBuffer and IndexBuffer.

Root is the root ModelBone, it is also in the Bones collection.

Tag is an object that can be used by custom processors to pass custom data to the game.

This is enough data to render the model and perform hard-coded rigid animation, but it does
not provide any rigid or skinned animation data. It is up to us to develop a new processor which
extends the basic model processor to include animation data in the Model object’s Tag.

Animation Model Processor The Animation Model processor is a subclass of the standard model
processor in XNA. It’s main purpose is to take the animation data passed to it from the FBX-
Importer or XImporter, format it properly and attach it to the Tag property of the Model object
output. It also attaches correct Effects to the different MeshParts of the model, here we attach
our Deferred Shader to the models.

The main function of an XNA content processor is Process. It gets a tree of NodeContent
nodes, which is a generic data structure containing model data, as well as a ContentProcessor-
Context instance, which is the processor’s access to the content pipeline helper functions and
environment. The Animation Model processor overloads this function:

54 ORZAM

5.7. ANIMATION

Listing 5.15: The Main Function of the Animation Model Processor
1 public override ModelContent Process(NodeContent input, ContentProcessorContext context)
2 {
3 // Find out if any meshes in the three have vertices with skinning weights attached to them
4 bool hasSkinning = HasMeshWithWeights(input);
5
6 // Instanciate the container for our animation data
7 data = new AnimationData() { Skinned = hasSkinning };
8
9 // The base Processor will return an instance of this class

10 // We want to set content.Tag to a dictionary that contains our animation data.
11 ModelContent content;
12
13 if (hasSkinning)
14 {
15 // Get the skinned animation data before letting the base content processor handle the model
16 GetSkinnedAnimation(input, null);
17
18 // Let XNA’s model processor process the model.
19 content = base.Process(input, context);
20
21 // If there were no animations, we log a warning.
22 // The skinning data is still useful if we want to do the animations procedurally.
23 if (data.Tracks.Count == 0)
24 {
25 context.Logger.LogWarning("", new ContentIdentity(context.OutputFilename), "Mesh is skinned but has

no animation?");
26 }
27 }
28 else
29 {
30 // For rigid animation, we want to let XNA process the model first.
31 content = base.Process(input, context);
32
33 // Then we find the animations and save them in AnimationData.
34 FindRigidAnimations(input, content.Bones);
35 }
36
37 // We sort all keyframes we have found and use the last keyframe’s timestamp as the duration of the entire

animation
38 foreach (var animation in data.Tracks.Values)
39 {
40 animation.Keyframes.Sort((x, y) => x.Time.CompareTo(y.Time));
41 animation.Duration = animation.Keyframes.Last().Time;
42 }
43
44 // Add a dictionary to the tag if it is not already there, then add our animation data to the dictionary
45 Dictionary<string, object> tag = content.Tag as Dictionary<string, object>;
46 if(tag == null)
47 content.Tag = tag = new Dictionary<string, object>();
48
49 tag.Add("AnimationData", data);
50 return content;
51 }

The order in which we process animation and the model differs between rigid and skinned an-
imation. For rigid animation we work directly on the ModelBones in the Bones property of the
Model without any changes, whereas for the skinned animation we want to get the hierarchy of
the bones that are used in skinned animation and put those in a separate list. The bone indices
that the XNA model processor applies to the vertices are based on having all skinned bones in
one list, separated from the unskinned bones.

The AnimationData class contains a map of all animation tracks the file contains, a track
contains a list of the keyframes which make up an animation, as well as the duration of the
animation. FindRigidAnimations simply traverses the model hierarchy and finds all keyframes
and puts them into the track map.

In addition to the animation tracks, the AnimationData class also contains all the information
needed to perform skinning if the model is skinned. GetSkinnedAnimation iterates all skinned
bones and saves them and their animations in AnimationData along with the Bind Pose and
InverseBindPose of every bone:

Listing 5.16: Saving skinned animation data into AnimationData.
1 public AnimationData GetSkinnedAnimation(NodeContent input, ModelContent model)
2 {
3 // Find the root of the bone skeleton.
4 // The skeleton is the same thing as a tree of bones.
5 // Only one root is supported in our processor.
6 BoneContent skeleton = MeshHelper.FindSkeleton(input);

Oblivious Rampaging Zombies And Monkeys 55

Chapter 5. The EGGS Engine

7
8 // Bake the transformations of everything but the bones in our skeleton into the model, as the skinned

bones are the only thing we want to animate
9 // Baking means applying the transformations to the vertices beforehand

10 FlattenTransforms(input, skeleton);
11
12 // Get a flattened list of all bones in our skeleton
13 List<BoneContent> skeletonBones = (List<BoneContent>)MeshHelper.FlattenSkeleton(skeleton);
14
15 // Throw an exception if there were too many bones for the vertex shader function to handle
16 if (skeletonBones.Count > MaxBones)
17 {
18 throw new InvalidContentException(string.Format("Skeleton has {0} bones, but the maximum supported is

{1}.", skeletonBones.Count, MaxBones));
19 }
20
21 // The bind pose
22 Matrix[] bindPose = new Matrix[skeletonBones.Count];
23
24 // Inverse bind pose
25 Matrix[] inverseBindPose = new Matrix[skeletonBones.Count];
26
27 // A list of indices, its like a map, looking up a bones index in this will return the index of the bones’

parent
28 int[] skeletonHierarchy = new int[skeletonBones.Count];
29
30 for (int i = 0; i < skeletonBones.Count; i++)
31 {
32 bindPose[i] = skeletonBones[i].Transform;
33 inverseBindPose[i] = Matrix.Invert(skeletonBones[i].AbsoluteTransform);
34 skeletonHierarchy[i] = skeletonBones.IndexOf(skeletonBones[i].Parent as BoneContent);
35
36 // We also save a map of all bones, so we can look them up by name
37 if (!string.IsNullOrEmpty(skeletonBones[i].Name))
38 data.BoneMap.Add(skeletonBones[i].Name, i);
39 }
40
41 // Get all the animations associated with the skeleton and generate animationtracks.
42 foreach (var animation in skeleton.Animations)
43 {
44 AnimationTrack processed = ProcessAnimation(animation.Value);
45 data.Tracks.Add(animation.Key, processed);
46 }
47
48 // Put the data into AnimationData and return it.
49 data.BindPoses = bindPose;
50 data.InverseBindPoses = inverseBindPose;
51 data.SkeletonHierarchy = skeletonHierarchy;
52 return data;
53 }

The complete AnimationData object is all we need to add animation to our models at runtime.

5.7.5 Playing Animation At Runtime

To play the animations in game we implemented an AnimationPlayer class, it has a reference
to the model and therefore also the AnimationData. An AnimationPlayer object is needed for
every instance of an animated model. This is because the ContentManager ensures that there is
always only one instance of a specific Model and AnimationData.

The animation player has three arrays of transformation matrices, the BoneTransforms,
WorldTransforms and SkinTransforms, the last is only used for skinned animation. The Bone-
Transforms matrix array contains the current pose of every bone in the model for this instance,
WorldTransforms contain the absolute transformations of every bone (in object-space) and Skin-
Transforms contain the transformations needed by the Skinning vertex shader as described in
section 3.3 on page 22.

Once an animation has been started, it progresses by calling an update function on Anima-
tionPlayer with the amount of time to progress, which can be scaled if needed. During the
update step the animation player updates the amount of time which has progressed since the
animation started. If the animation has ended it can either stop or loop. After time has been
progressed, the BoneTransforms array will be updated with values from the active keyframes at
the current animation time. Then the WorldTransforms are updated using the BoneTransforms
and the hierarchy of the bones from the Model. Finally, if the model is skinned, the SkinTrans-
forms are calculated using the InverseBindPoses from AnimationData and the newly calculated
WorldTransforms.

56 ORZAM

5.8. SCREEN SYSTEM

5.8 Screen System

XNA provides us with a game-loop, which contains both an Initialize(), LoadContent(), Unload-
Content(), Update() and a Draw() method. This is enough for implementing a game, but for the
sake of simplicity of future game code we would like to add more abstraction to the game-loop.

We want a simple way of navigating between states in the game. More specifically we would like
a number of game-loops and the possibility to dynamically switch between them. This resulted
in the classes GameScreen and ScreenController, which are described in the next two sections.

5.8.1 GameScreen.cs

The GameScreen class can be seen in listing 5.17. It basically corresponds to an XNA game-
loop, except that it has a unique ID and a reference to a ScreenController, which is responsible
for updating and drawing the relevant GameScreens. The ScreenController is described in sec-
tion 5.8.2.

A thing to notice is that a GameScreen has its own ContentManager, which makes it simple to
avoid having the content of an entire game in the memory at once. A game can be divided into a
number of GameScreens, for example by having a GameScreen for each level in the game. Level
progress could then be handled by loading a new GameScreen and unloading the content of the
old GameScreen from memory.

Listing 5.17: The GameScreen Class
public abstract class GameScreen
{

public string ID { get; private set; } // Used for uniquely identifying a GameScreen
protected Game Game { get; set; } // A reference to the main XNA game-loop class
protected ScreenController controller; // Used for navigating between GameScreens
protected ContentManager content; // Keep references to loaded content

public GameScreen(string id, ScreenController controller, Game game)
{

this.id = id;
this.controller = controller;
this.Game = game;
// Instantiate a ContentManager for use in this GameScreen instance
this.content = new ContentManager(game.Services);
this.content.RootDirectory = "Content";

}

public abstract void LoadContent(GraphicsDeviceManager graphics);
public abstract void Initialize(GraphicsDevice graphics);
public void UnloadContent() { this.content.Unload(); }
public abstract void Update(GameTime gameTime);
public abstract void Draw(GameTime gameTime, GraphicsDevice graphics, SpriteBatch spriteBatch, SpriteFont

spriteFont);
}

5.8.2 ScreenController.cs

The ScreenController class can be seen in listing 5.18 on the next page. The class is quite
simple, so a lot of details are omitted in the code listing.

Performance is essential because the functions of the class are called every frame. All Game-
Screens are stored in a .NET Dictionary (which is implemented as a hashtable), making it possible
to access any GameScreen by its ID in O(1) time.

There are three possible states for a GameScreen. It can either be both updated and drawn
(”Active”), only drawn (”Inactive”) or neither (”Hidden”). To help performance, two lists with
references to ”Active” and ”Inactive” GameScreens are used. This means that for example the
Update() function only needs to iterate through a subset of the screens and update them, instead
of checking all screens and only update screens with a specific flag set.

A limitation with the current ScreenSystem design is that it does not make sense to have more
than one active and one inactive GameScreen at a time. Active screens are drawn in front of
inactive screens, but with more screens it is not possible to control the order of rendering. It
would be simple to implement it, by for example adding a priority variable to GameScreen data
and draw screens in order based on that. However, we did not consider it important.

Oblivious Rampaging Zombies And Monkeys 57

Chapter 5. The EGGS Engine

Listing 5.18: The ScreenController Class
public class ScreenController
{

private Dictionary<string, GameScreen> allScreens; // All screens
private List<GameScreen> activeScreens; // Screens to update and draw
private List<GameScreen> inactiveScreens; // Screens to draw

public void AddNewScreen(string id, GameScreen gameScreen)
{

allScreens.Add(id, gameScreen);
}

public void SetInactiveScreen(string id)
{

// Remove screen from active screens, so it doesn’t get updated and add it to inactive
// screens, so its still gets drawn
GameScreen s = allScreens[id];
activeScreens.Remove(s);
inactiveScreens.Add(s);

}

public void Draw(GameTime gameTime, GraphicsDevice graphics, SpriteBatch spriteBatch, SpriteFont spriteFont
)

{
// Draw the screens. Active screens must be in front, so they are drawn last
for (int i = 0; i < inactiveScreens.Count; i++)
inactiveScreens[i].Draw(gameTime, graphics, spriteBatch, spriteFont);

for (int i = 0; i < activeScreens.Count; i++)
activeScreens[i].Draw(gameTime, graphics, spriteBatch, spriteFont);

}

// Omitted the following functions: Constructor, LoadScreen(string id), LoadAllScreens(),
// UnloadScreen(string id), UnloadAllScreens, Update(), SetActiveScreen(string id),
// SetHiddenScreen(string id) and a few properties.

}

58 ORZAM

CHAPTER

6

The BACON Editor

Our editor for the EGGS engine is named Bad Ass Creator Of Nodes (BACON).
It has two distinct parts: The Windows.Forms based user interface, and the XNA based Ed-

itorControl. They are tied together in the code using partly data structure manipulation, and
partly a very wide range of C# events, which make it possible to synchronize the status of se-
lected tools in the EditorControl and in the Windows Forms UI. In particular, the ToolHandler,
the SelectionHandler and the EditorControl itself contain the most important of these.

As seen in figure 6.1, the editor sits firmly between the Content Importers and a game, and takes
care of creating and modifying XML files for scene graphs and tile assets.

Figure 6.1: The relations between 3rd party programs, the content importers, the editor and the
game.

The chapter is separated into three parts: The GUI in section 6.1 which describes the graph-
ical user interface of the editor, then Tools in section 6.2 on page 61 which describes the six
direct manipulation tools available in BACON and finally, Selected Implementation Details in
section 6.3 on page 63 which contains a walk-through of three of the details editor’s implemen-
tation.

6.1 The GUI

Before describing some of the code which makes the editor work internally, the elements of the
user interface are explained. Figure 6.2 on the following page shows the editor, and the following
describes each of the elements in the image.

6.1.1 Toolbar

The toolbar (1) is separated into three sections:

Grid control controls the visibility and fine-grainedness of the two grids in BACON .

Tool selection allows the user to select a tool with the mouse, as well as at a glance see which
tool is the currently selected one.

Tool options changes depending on the selected tool. In the screenshot is seen the Select tool’s
options (consisting simply of a help label), but as can be seen in figure 7.6 on page 73 the

Oblivious Rampaging Zombies And Monkeys 59

Chapter 6. The BACON Editor

Figure 6.2: The EGGS BACON editor.

Polygon Drawer Tool1 for example has a dropdown box, which allows the user to select the
type of polygon to draw.

6.1.2 Available Content

The treeview on the left side of the window (2) contains all the assets in the Content directory
associated with the content project, selected when BACON is started the first time, or through
File→Set Content Project....

The Rebuild button will call the content builder, which utilizes the Content Importers and
Processors discussed previously to build all the content that has been ticked in the tree, and
thus make it possible to use that content in the game.

The third button, New, shows a menu with two options: New Tile Asset..., and New Scene
Graph, which create new tiles asset and scene graph respectively. A further, more intricate
description of how this is done can be found in section 7.5 on page 71.

The tree currently operates in two different modes - one showing all supported files found in
the Content directory, and another showing only the files currently added to the project. The
modes are switched by clicking the Show All Files button, and is inspired by the Solution
Explorer pane in Visual Studio (see figure 4.2 on page 29, where it is the third button on the
Solution Explorer toolbar).

6.1.3 Tabbed Document Section

The third section of the editor window (3) is the document window itself, which uses a tab control
to control the currently opened files, either assets or tiles. Closing an open file is done by middle-
clicking on the file’s tab in the tab bar, or by selecting File→Close.

1Explained in section 6.2.2 on page 62

60 ORZAM

6.2. TOOLS

6.1.3.1 EditorControl

The EditorControl is a surface upon which XNA draws, and contains all the code which makes
the tools function. The thick, green border seen in the screenshot signifies that the mouse focus
(and the keyboard focus which follows the mouse) is on the EditorControl - if this turns red,
the mouse and keyboard focus is thus elsewhere. What this means is that you can only switch
between the different tools using their shortcut keys when this border is green.

6.1.3.2 Level Content Tree

The Level Content Tree display the scene graph of the open file. Any selections made in the tree
graph is also made in the EditorControl and vice versa.

6.1.3.3 Property Grid

The property grid shows the properties of the currently selected node.

6.2 Tools

The main functionality of the editor is to create and manipulate objects in a 3D world. For this
we need some tools to create objects and apply transformations on these. Implementing such
tools is a non-trivial task, as there are many considerations to be made.

The tools should be generic enough to allow the user to create any type of scene graph. The
available tools are as follows:

• Selection Tool

• Polygon Drawer Tool

• Scaling Tool

• Rotate Tool

• Moving Tool

• Polygon Modifier Tool

6.2.1 Selection Tool

The selection tools allows the user to select the objects in the 3D world he wishes to modify. It
can operate in two modes, one in which it selects positioned objects in the 3D world and one
where it selects polygon points. The point selection mode is only active when the selection tool is
used as a sub-tool in the polygon modifier tool.

Selection can be done in two ways. The first one is to simply click somewhere on the screen
with the mouse. In this case a ray will be shot out from the mouse cursor’s position and any
objects it intersects will be considered for selection. If no objects have been selected so far the
closest of the objects that were hit would be selected. However if one of the objects that were hit
was already selected the object behind that one would be selected. This allows the user to select
objects behind other objects by clicking multiple times in the same spot.

The other way to select is to hold down the left mouse button and drag the mouse across the
screen. This will display a rectangle created with the start and end-position of the drag as top-
left and bottom-right corners. A frustum is then created using this rectangle by unprojecting the
corners of the 2D rectangle into the 3D game world. The top of the frustum is made by unpro-
jecting the corners a distance of zero and the bottom of the frustum is made by unprojecting to
the viewing distance. This way the frustum will start at the camera and cover everything that
can be seen within the 2D rectangle. After the frustum is created an intersection test is made
between the frustum and all objects in the game world and those that intersect are added to the
selection.

Oblivious Rampaging Zombies And Monkeys 61

Chapter 6. The BACON Editor

All objects in the game world have an oriented bounding box (OBB) associated with them so
the intersection test is made as an frustum/OBB intersection test. The frustum is represented
by 6 planes and the intersection test is done by doing a plane/OBB distance tests for each plane.
Model objects will get their OBB by doing a world transformation of the model’s initial axis-
aligned bounding box (AABB)2. All other objects (such as for example ObjectNodes) get a default
20 ∗ 20 ∗ 20 axis aligned bounding box.

When an object is selected its bounding box will be drawn to the screen to indicate that it is
selected. If more than one object is selected an extra bounding box will be made that surrounds
all the selected objects. This bounding box can later be used to quickly check whether the user
has clicked on the selection or outside of it.

Due to the hierarchical way objects are stored it is possible to select both a parent object and
its children. This might lead to problems when performing operations on the selection: Children
who have an ancestor in the selection will get the operation performed twice, once for the ancestor
object and once for themselves. To avoid this problem the selection is parsed once the user
releases the left mouse button and the necessary child objects are removed from the selection.
Following this, the bounding box for all top level objects in the selection is extended so it also
surrounds all descendants. The global selection bounding box is also adjusted accordingly. This
is to make sure the selection surrounds all objects that will be affected by a transformation. To
indicate which descendants have been automatically selected in this way such descendants will
have a green bounding box drawn around them.

It is possible to do incremental selection by holding down the control key while making a selec-
tion. Incremental selection works as follows: First all objects from the previous selection is added
to the selection. Then all objects in the ongoing selection is checked against what is already in
the selection. If the newly selected object is already in the selection it will be removed and if it is
not it will be added. Incremental selection allows the user to build selections containing objects
spread out across the 3D world without having to select objects in between.

Selection of points works in much the same way as selection of 3D objects. The only difference
is that point/frustum intersection is used instead of frustum/OBB intersection. To make points
easier to hit with ray-selection (single click selection) the points will be considered as small
rectangles in the 2D plane. The intersection test is performed between the rectangle and the
intersection point of the ray and the 2D plane.

6.2.2 Polygon Drawer Tool

The polygon tool allows the user to draw 2D polygons onto the XZ plane. Polygons are drawn by
clicking with the mouse on the points on the screen where the polygon’s points are to be placed.
When the mouse button is clicked a ray is shot out from the mouse cursor’s position and its
intersection with the XZ plane is found and used for creating a new point. It is possible to place
the camera so that no intersection will be made in which case nothing will happen. While in
the process of drawing a polygon the user can right-click with the mouse to end the polygon by
adding an edge from the last drawn point to the start point of the polygon. Also if the user tries
to create a new point that is close to the starting point a dialog will appear that prompts the user
whether he wants to close and finish the current polygon. Created polygons are required to have
three or more points. If the user tries to create a polygon with less than three points the attempt
will simply be ignored and the tool will reset back to the state before starting the drawing of the
polygon.

6.2.3 Scaling Tool

The selection tool allows scaling of selected objects. When the user clicks the left mouse button
a ray will be shot out from the cursor’s position. If this ray hits the bounding box of the current
selection the user can move the mouse up and down to scale the selection. If the selection is not
hit by the ray, control is passed on to the selection tool and a new selection is started.

2A model is associated with an AABB when it is loaded. The AABB is the smallest AABB that contain all vertices in the
model (in object space).

62 ORZAM

6.3. SELECTED IMPLEMENTATION DETAILS

If only one object is selected when scaling, that object will simply be scaled around its origin.
If multiple objects are selected each object will be scaled around the center of the selection.

By default the scaling tool will scale along all three axes. It is however possible to change which
axes will be scaled.

6.2.4 Rotate Tool

The rotate tool works in much the same way as the scaling tool. If the user clicks outside the
current selection, control will be transfered to the selection tool and a new selection started. If
the user clicks on the selection he can move the mouse left or right to rotate the selection.

If a single object is selected that object will be rotated around its origin. If multiple objects are
selected they will be rotated around the center of the selection. By default rotation happens in
steps of 45◦, but holding down the shift key makes it possible to freely rotate the selection.

By default the tool rotates objects around the Y -axis. The axis to rotate around can be changed
by pressing a key.

6.2.5 Move Tool

The move tool works in the same way as the scale and rotate tools when it comes to selecting. If
the user clicks outside the selection a new selection is started and if he clicks on the selection
he can move the selection by moving the mouse.

By default objects are moved in the XZ-plane. The plane in which to move selection can be
changed by pressing a key.

The tool figures out where to move the selection by shooting a ray out from the mouse cursor’s
position and finding this ray’s intersection with the current moving plane. This means that it is
good idea for the user always to have the camera positioned so it is facing the plane that is being
moved upon.

By default movement is snapped to the grid for the plane that is currently being moved upon.
However this behavior can be changed by holding down the shift-button allowing to move the
selection freely.

6.2.6 Polygon Modifier Tool

The polygon modifier tool allows the user to modify existing polygons. It operates in two modes:
SelectAndMove and AddAndRemove. The user can switch between these two modes by pressing
the ENTER key.

The SelectAndMove mode works in the same manner as the Moving Tool, except it selects and
moves polygon points instead of 3D models.

The AddAndRemove mode allows the user to add and remove points on existing polygons.
When this mode is selected a yellow line will be drawn on the screen from the mouse cursor
position to the closest point in any of the polygons on the screen. A green line is also drawn from
the mouse cursor to the closest of the neighbor points to the closest one. If the user clicks the left
mouse button a new point will be added to the polygon from which the lines are drawn, making
new edges where the lines were before. If the user clicks the right mouse button the point in the
polygon at the end of the yellow line will be removed. It is not possible to reduce the number of
points in a polygon to less than three.

Another feature of the AddAndRemove mode is that the normal to the edge between the yellow
and the green line is drawn as a white line on the screen. This allows the user to check whether
the normals on the polygons are facing the right way. The direction of the normals on the current
polygon can be changed by pressing a key.

6.3 Selected Implementation Details

This section describes how certain parts of the editor were implemented - in particular the Prop-
erty grid, the Build Content Dialog and the way in which the main toolbar and the EditorControl
are connected in code.

Oblivious Rampaging Zombies And Monkeys 63

Chapter 6. The BACON Editor

6.3.1 Property Grid

When the Level Content tree’s selection changes the property grid in EditorPage is assigned the
SceneNode represented by the newly selected tree item - a reference to this item is contained in
the tree item’s Tag property. The property grid control then looks at the assigned object, looking
for a set of PropertyGrid specific attributes, and shows those properties in the grid.

If a value is changed, the PropertyValueChanged event is fired. This is caught by EditorPage,
which takes care of updating the data inside the forest.

If values are changed inside the EditorControl itself, using one of the tools there (move,
scale...), EditorControl calls the RefreshPropGrid function to make sure that the property grid
data is kept up to date.

6.3.2 Build Content Dialog

When the Rebuild button on the content pane’s toolbar is clicked, the content project is saved
and reloaded, the filelist updated, and finally the BuildContentDialog is called. This dialog in
turn uses the XNAProjectWrapper and ContentProjectWrapper classes, which wrap certain
functionality of Microsoft’s Build classes together, to rebuild the content project, showing a
progress dialog while doing so, and capturing any errors which might eventually show up. The
files involved with this process are Editor/Editor/BuildContentDialog.cs and the four files in
Editor/XNAProjects, and though it is not obvious how to implement this type of system, it is still
trivial, and as such shall not be described in further depth here.

6.3.3 Toolbar and EditorControl Hookup

To show how the EditorControl is synchronized with the rest of BACON we use the program’s
toolbar as an example. The same method is applied to the Level Content tree and the Property
Grid.

This is important because the hookup does not work as a toolbar normally would. That is,
the toolbar control tells the application which tool must now be used, and then expects that to
happen, thus setting itself to a state according to this. In stead, the toolbar in BACON sends
a request to the EditorControl in the current tab that a certain change is requested, and then
does nothing further. If the EditorControl at any time changes its status, it fires an event, which
is subscribed to by the toolbar, and acted on accordingly. As an example of this, the process of
switching from the Select tool to the Move tool is described next. The code described below is
found in EditorControl.cs file and Form1.cs.

The first thing that must happen to get this to work, is setting up the framework for it. What this
means is that in the EditorPage, an event named ToolChange is created.

Form1 subscribes to the ToolChanged event in the hookUpToolbar function, which is called
whenever an EditorPage (the control which contains the EditorControl) is created, meaning
when a scene is created, opened or switched to.

This makes it possible for the EditorPage to inform Form1 of any internal changes to the cur-
rently active tool, which is done either on SetTool or in the Update function, where EditorPage
discovers which tool is the active one.

The final bit of code which makes the toolbar work is the toolStrip1 ItemClicked function,
which handles all clicks on the toolbar. All toolbar items have a string assigned to their Tag
parameter, and if that is the same as the name of one of the tools, the EditorControl’s SetTool
function is called with that name, which sets the entirety of the event chain in motion, eventually
causing the toolbar to be updated with this new selected item, and the active subtoolstrip to be
assigned through the editor ToolChanged function in Form1.

64 ORZAM

CHAPTER

7

The ORZAM Game

This chapter describes the implementation of our game: Oblivious Rampaging Zombies And
Monkeys (ORZAM). It contains the following sections:

Overview: Provides a short overview of the game, containing screenshots and a sales pitch.

Game Architecture: Describes the overall architecture of the game.

Tileset Design: Describes how the different tiles of the game were made; from sketches on a piece
of paper, through the use of the BACON editor, to finally being implementable in the game.

Asset Work: Describes work put into the assets and their influence on the game.

Populating the Game World: Explains how we spawn enemies and items in the world.

Movement and Physics: Details how enemies and players move around in the game world.

Special Effects: A description of the different kinds of effects in the game.

Game State Implementation: Describe the different game states and screens used in the game.

Audio: A short description of the game specific audio implementation.

7.1 ORZAM Overview

This section is done in the style marketing departments of game companies often use to describe
their games.

The main features of ORZAM can be described as follows:

ORZAM is a compelling visual and auditive gaming experience with three action-packed
levels in an exciting environment. Playing a level is always an unique experience. Fight
against believable computer-controlled resistance using a variety of weapons, includ-
ing Uzis and Miniguns. Play alone or with up to three friends simultaneously using
splitscreen-technology using both keyboard and gamepads. But remember a high de-
gree of player co-operation is needed to defeat innovative game mechanics like yellow
morphing zombies flying out of cannons.

Figure 7.1 on the next page shows action taken directly from in-game. The monkey is fighting
for his life against a much stronger enemy, a giant morphed undead brown zombie with an axe
in the back of its head. The floor is already splattered with monkey and zombie blood.

Figure 7.2 on the following page shows the truly amazing graphics in the game. Genuine 3D real-
time graphics running at high resolution at a stable fixed frame-rate. Also notice the innovative-
looking 3D models and their persuasive real-time shaded dynamic static light setting.

Finally figure 7.3 on page 67 shows the flexible multiplayer functionality. Up to 4 players can
easily join, using multiple input devices and the opportunity to look at each others screen makes
it an unforgettable co-operative gaming experience.

In the next section, we will describe how we made all this possible.

Oblivious Rampaging Zombies And Monkeys 65

Chapter 7. The ORZAM Game

Figure 7.1: Screenshot from ORZAM showing the monkey in heavy fighting with a giant brown
zombie, which has just been shot out of a cannon.

Figure 7.2: Screenshot from ORZAM showing one of the game areas with overview camera con-
trol. Notice the lighting around the objects.

66 ORZAM

7.2. GAME ARCHITECTURE

Figure 7.3: Four player split screen action.

7.2 Game Architecture

This section describes the overall architecture of the game logic in the ORZAM game. The game
logic is implemented in C# on top of the libraries from the EGGS engine, using an object-oriented
approach.

Our main entry point in the application is a class called Game1, which contains the game-loop
given by XNA Framework. Game1 is merely a container for the Screen System (see section 5.8
on page 57), which extends the game-loop with support for additional game states. The Screen
System is used for displaying various graphical user interface screens and navigation. One of
these screens run the GameWrapper class, which is the main glue of the game.

The GameWrapper handles essentially everything in the game, so instead of going into details,
we will provide the pseudo-code seen in listing 7.1.

Listing 7.1: High-level pseudo-code of Update() and Draw() in the GameWrapper class
Class GameWrapper
{

Update()
{

UpdateAmbientSounds() // E.g. play bear sounds
GetInputFromPlayers() // Gather input and move players

For each player
{

CheckIfInGoalTile() // Did anyone find the goal tile?
CheckIfDead() // If one dies, everyone loses
UpdateCamera() // Update chase camera according to player position

}

UpdateTiles() // Update tiles including things in them
UpdateEffects() // E.g. advance projectile traces
UpdateEnemies() // E.g. check if player is nearby and move enemies around
UpdateCollision() // Find and resolve collisions

}

Draw()
{

Oblivious Rampaging Zombies And Monkeys 67

Chapter 7. The ORZAM Game

CheckIfLostOrWonScreenShouldBeDrawn() // Show win/lose screen?

For each player
{

BeginDeferredRendering()
DrawTiles() // Draw tiles, including static models, enemies etc, in the tiles
DrawParticleSystems() // Draw projectile traces, wall sparks, etc
DrawBlood() // Draw the blood splatters
EndDeferredRendering()

DrawPlayerHUD() // Draw weapon information and the mini map

DrawResultingScreenToSplitScreen()
}

// Render all split screens to the screen.
SplitScreensToScreen()

}
}

The Player class contains data and functions for the player. In-game a player is visually
represented by a model of a monkey on a segway. The Player class extends DynamicCircleNode,
which represents dynamic objects in the game.

The Player class functions are mostly centered on weapon control and picking up items. The
pickup system is described in section 7.3.

The Weapon class handles firing, reloading, sounds, etc. for a weapon. Weapons are created
from a static class called WeaponFactory, using a factory design pattern. The point of using this
pattern is to store all informations the same place, to make it easy to change the properties, for
example the damage of a weapon.

7.3 Populating the game world

All non-static objects in the game are placed in the game world at spawn points. Spawn points
are placed in each tile as SpawnPointNodes using the BACON editor. SpawnPointNodes can be
one of the following different types:

• Player

• Health

• Ammunition

• BigAmmo

• Weapon

• BigWeapon

• Zombie

• BigZombie

• ZombieLauncher

• Random

7.3.1 Position Type Spawn Points

Position type spawn points are spawn points that simply provides a location where a certain
type of object can spawn. Player, Zombie, BigZombie and ZombieLauncher are all Position Type
Spawn Points.

7.3.2 Supply Type Spawn Points

Supply type spawn points are spawn points that provide supplies that can be picked up by the
players in the game. Depending on the difficulty setting for the game supply spawn points might
respawn an item a certain amount of time after it has been taken.

68 ORZAM

7.3. POPULATING THE GAME WORLD

Spawning of Players

When placing players in the game world at the start of a game the game logic will lookup an
available Player type SpawnPointNode for each player and place the player there. The avail-
ability of a SpawnPointNode is checked by testing whether a BoundingCircle with the same
radius as the player’s will collide with any dynamic objects when placed at the position of the
SpawnPointNode.

Spawning of Zombies

Spawning and despawning of zombies is handled by the ZombieController. Zombies are spawned
in the same way as players, by finding an available Zombie type SpawnPointNode and placing
the zombie there. If no available spawn point is found while trying to spawn a zombie the zom-
bie will simply not be spawned. Also each tile is allowed to spawn a maximum of 10 zombies.
Any attempts to spawn additional zombies after 10 zombies has been spawned in a tile will be
ignored.

At the start of the game zombies are placed in the 5 ∗ 5 tile square area surrounding the players,
excluding the tile the players themselves spawn in. The number of enemies spawned will equal
10 times the number of available tiles to spawn in. Each zombie will be placed in a random tile
meaning that there might not necessarily be 10 zombies in each tile at the start of the game.
The maximum number of zombies in one tile will however be 10 due to the limit of maximum
spawning 10 zombies in each tile.

The ZombieController keeps a list of tiles in which zombies can be spawned. This list is ini-
tialized to the tiles that zombies are spawned in at the start of the game and then updated each
time a player moves from one tile to another. The list will contain any tile in the 5 ∗ 5 tile square
area surrounding each player, excluding any tile that contains a player. When a player moves
from one tile to another all zombies are despawned from tiles that are removed from the list and
up to 10 zombies are spawned in each new tile added to the list. The tiles that are removed from
the list will also have their spawn counter reset so that they can spawn another 10 zombies next
time a player get close to them. In addition to spawning zombies whenever a player changes tile
the ZombieController will also try to spawn a zombie in a random tile every two seconds.

Spawning of Big Zombies

Whenever the ZombieController tries to spawn a zombie in a tile it will check if there is an
available BigZombie type SpawnPointNode in the tile. If that is the case a Big Zombie will be
spawned instead of a normal zombie.

Other types of spawning

All other types of spawn points have a chance of placing an item into the game. Each Spawn-
PointNode has a spawn likelihood that can be set in the editor. This is a number between zero
and one which represents the percentage chance that the spawn point will be active in a game. At
the start of the game all spawn points are checked and a random number between zero and one
is compared to the likelihood. If the number is greater than the likelihood the spawn point will
be disabled for the current game. Otherwise the spawn point will be initialized. ZombieLauncher
spawn points are special in that they when initialized simply place a zombie cannon in the game
world and does nothing more for the rest of the game.

Initializing of supply type spawn points

When supply type spawn points are initialized they will have a model associated with them,
representing the item that can be picked up from the spawn point. For health spawn points the
amount of health that can be received from the spawn point is set and for ammo spawn points
the number of clips to be received is set. Weapon spawn points will have the type of weapon set
to one of the three types of small weapons. BigAmmo and BigWeapon spawn points are not used
as these items are only available through dynamically generated spawn points in the game.

Oblivious Rampaging Zombies And Monkeys 69

Chapter 7. The ORZAM Game

Random spawn points

A random spawn point has a certain chance of being converted to other types of spawn points.
When random spawn points are encountered during the initialization of spawn points there is a
one percent chance that the spawn point will be converted to a BigZombie spawn point, a 10%
chance that it will become a Health spawn point, a 5% chance that it will become a Zombie
spawn point and a 5% chance that it will become a Ammunition spawn point. The remaining
79% of the random spawn points will simply not be used.

Picking up items from spawn points

Whenever a player collides with a spawn point the game will try to give the item in the spawn
point to the player. This is done by removing the item from the spawn point and trying to give it
it to the player. If the player cannot receive the item the item is put back into the spawn point.
When picking up ammunition or health the amount that can be picked up is simply added to
the players current amount of health or clips. The player will automatically pick up weapons if
he has room for the given type of weapon. Otherwise the player will have to press the pick up
weapon button which will make him pick up the new weapon and drop his old one.

7.3.3 Respawning of items

When a player picks up the item in a spawn point, the spawn point will start counting down to
a respawn of the object contained in the spawn point. The respawn time for each type of item is
dependent on the difficulty selected for the current game. While the respawn counter is counting
down objects cannot be obtained from the spawn point. It is possible to configure spawn points
to never respawn items in which case the spawn point will provide its item only once. While
respawning a SpawnPointNode will display a power-up timer model instead of the model for the
item in the spawn point. Spawn points that never respawn will show no respawn model. The
models used for the spawn point timers can be seen in figure 7.16 on page 81.

7.3.4 Dynamically generated spawn points

Some enemies drop items when they are killed. These items as well as weapons that are dropped
when the player picks up a new weapon are placed in dynamically generated spawn points. These
spawn points are special in that they provide one single item only once and are then removed
from the game. If for example a player drops a weapon the weapon’s object will be put into a
spawn point and that exact same object will be given to any player that picks it up. This means
that dropped weapons keep their ammunition count so that you cannot drop a weapon and pick
it up again to gain additional ammunition.

When a dynamically generated spawn point has to be placed, several locations around the spawn-
ing object is tested. Each location is at a distance to the spawning object so that the new spawn
point and the spawning object will not intersect. The locations is found by shooting rays out in
16 different directions around the spawning object and traveling the necessary distance along
the ray. Each location is tested by checking if a BoundingCircle with the same radius as the
SpawnPointNode placed at the location will intersect with any objects. If a location with no inter-
sections is found then that location will be used for the new spawn point. If no possible location
is found the spawn point will simply be created at a position offset 10 units along the X-axis
from the spawning object’s position.

7.4 Movement and Physics

This section briefly outlines the algorithms used for moving the characters in the game.
For each frame the collision system in the game engine is used to handle collisions between

enemies, players and static objects in the game world. Enemies and players are represented by
circles in the game and the game world is represented as polygons.

70 ORZAM

7.5. TILESET DEVELOPMENT

Whenever a player or an enemy has crossed from one tile to another the object which repre-
sents them will be removed from the tile they are leaving and added to the tile they are entering,
at the same time changing their position to be relative to the new tile.

7.4.1 Player movement

Player avatars will move according to input from the player. The player avatar will face a given
direction which the player can change with two keys, one for rotating left and one for rotating
right.

When the player holds down one of these keys the avatar will rotate in the specified direction
with a set rotation speed. When the player presses the key for moving forward the avatar will
start to accelerate in the direction it is facing. This acceleration will continue until a given
maximum speed is reached, after which the avatar will move forward at a constant speed. When
the key for moving forward is released the avatar will decelerate until it stops. The key for moving
backwards works the same way except it accelerates in the opposite direction.

7.4.2 Enemy movement

Enemies always move at a set speed, however the direction they move in follows two patterns:
One for when they are close to their targeted player and one for when they are just roaming.

When roaming the the enemy will shoot out rays to the front, left, right and back and determine
in which direction it can walk the furthest distance without hitting a wall, then start turning and
walking towards the collision point with that wall. Roaming enemies will repeat this procedure
every two seconds.

When in the same tile as their targeted player enemies will turn and walk directly towards that
player. In this mode enemies will update their target point every 0.1 seconds. Enemies turn at a
set turning speed, always turning the shortest distance to their given target.

7.5 Tileset Development

A large part of the engine is the work flow which enables creation of tiles, from conception to
using the tile, or indeed tileset, in the game. The following describes the work flow which gets a
tileset from the creator’s mind and into the game.

Because of the way the level generator works, there are significantly fewer crossings than the
other types of tiles in the average level. This means that when building tilesets fewer crossing
type tile assets than the other types are needed. For a reminder of the tile types refer to figure 5.2
on page 37.

Step 1: The Concept

To make a tileset consistent, one should consider the basic concept it is to be based upon. All of
this is based essentially on the same principles that one would find in the creation of a film set.
The setting, the look and the feel of the stage should be consistent and believable, and as such
the concept thoroughly thought through.

In the case of ORZAM the concept is that of an underground laboratory, the home of a mad
scientist. This means doomsday devices, Tesla coils, large generators to power the whole thing if
the government would try and shut the place down, as well as objects with no obvious purpose.

Step 2: Sketching

The next step is to sketch out each and every tile which is to be made for the tileset. The reason
for sketching the tiles out first and not just starting, is to allow the tileset creators to settle on
which assets are needed, but also because it is simpler to discuss the levels on paper first, than
when they have already been created and are working in the game.

Oblivious Rampaging Zombies And Monkeys 71

Chapter 7. The ORZAM Game

Figure 7.4: Sketch of the turbine generator room.

Figure 7.5: Closeup of the turbine generator asset sketch.

72 ORZAM

7.5. TILESET DEVELOPMENT

While testing the tiles out in the game is equally as important as the pre-implementation design
that the sketching phase represents, and can force changes to the design (for example if a tile
is shown to break the game flow when it is inserted in the game), it is important to discuss
the design before the implementation of it is begun. This helps to streamline the look and the
creation of the tiles, so that once that phase is begun, it can proceed at the highest possible
pace, and the tiles, once in the game, can be tested for playability alone, rather than having to
be tested for look as well.

The sketches used for creating the tiles in our game can be seen in appendix A on page 94.
To illustrate the process, a sketch has been completed in a more detailed form, as the sketches

would look when creating a more serious implementation of such a game, and can be seen in
figure 7.4 on the facing page.

Step 3: Creating Game Assets

Figure 7.6: The turbine generator asset in the BACON editor, drawing the physics polygon. Note
that this shows the use of the orthogonal camera in the editor.

A game asset is a scene graph created using the BACON editor. Creating a game asset is for
convenience. A game asset is not the same as for example a 3D model asset, those assets are
described in detail in the next section about asset work.

Lighting is done in the BACON editor, as lighting in EGGS is done differently than it is in
3D modeling packages. As described in section 5.5.1 on page 43, the lighting in EGGS is done
through positioning point light sources in the scene, with a radius and an intensity. What this
means from a level creator’s point of view is that lighting a level in BACON is as simple as
inserting and positioning point lights, and then assigning a radius and intensity.

To illustrate this process, we continue with the high-quality sketch seen in figure 7.4 on the
facing page. In it, not only is the layout of the tile asset defined, but also a sketch of the turbine
generator asset. A closeup of this area can be seen in figure 7.5 on the preceding page. This
asset, once modeled by the 3D artist and exported to one of the supported formats, is handed
over to the level creator, who puts the file into the content project, as described in the Engine
Implementation chapter 5 on page 31.

Oblivious Rampaging Zombies And Monkeys 73

Chapter 7. The ORZAM Game

The level creator then creates a new scene graph in the BACON editor, through New→New
Scene Graph, which brings up an empty editing pane. For convenience, an ObjectNode is added
into the level forest, though this is not strictly necessary - the usefulness of this, however, will
become obvious in step four. The node, which for the time being is simply called ”ObjectNode” is
clicked upon and in the property grid, the Name value is changed to suit the asset which will be
created. The asset file is then saved (File→Save as...) in the same folder as the model resides
in, again for convenience, using the same name as was given to the object node.

Figure 7.7: Creating a new tile in BACON - note the position of the New button.

The level creator now drags the model from the file list on the left and onto the object node.
This will enable the model as part of the content project, and once dropped, the project is auto-
matically rebuilt, the model loaded and shown in the view port. It may be required to change the
scale of the model. It is important to change the scale of the model now, as changing the scale
later on can become troublesome.

Right-clicking on the object node, the level creator chooses to add a new PointLightNode,
which is then positioned using BACON’s tools for manipulating position of objects (both direct
input in the property grid below the level content, and using the Move tool). This is repeated for
all the lights seen in the sketch of the turbine generator, adding the colour information to the
three red lights as they are added.

The last item on the agenda for creating the asset is physics polygons. These define the areas
of the model which will block the player in the level when the asset is inserted. This is drawn
using the Polygon tool, with the PhysPolyNode selected in the drop-down box. Turning on
the grid can be good for this purpose, as it helps to see where the model actually fits on that
grid. The turbine generator is going to be used in such a way that a polygon around multiple
generators would be disadvantageous, and as such, the physics polygon is drawn around the
model in the asset rather than in the tile. Other objects, such as for example the Star Tracers (as
seen in figure 7.21 on page 83) are used in such a way that drawing the physics polygon around
multiple objects will be advantageous, and as such this step can be skipped.

Finally, after of course saving the asset with all the lights in place and the physics polygon
drawn around the model, as it can be seen in figure 7.6 on the preceding page, the asset is
closed by middle-clicking on the tab bar.

Step 4: Creating Tiles

Creating the actual tile in BACON is similar to how editing the assets functions, though with the
addition of the wall polygon tools.

Step 4.1: Adding a Tileset

If this is the first tile of a tileset, a tileset must first be created. This is done by editing the
Tilesets.xml file, found in the content folder under Tilesets. This file does not have a visual

74 ORZAM

7.5. TILESET DEVELOPMENT

Figure 7.8: BACON with a newly created empty end tile - note that the editor area has been
contrast-stretched, as while the grid is visible on a screen, it does not show well in
screenshots on paper.

representation, but can still be opened in BACON , which then shows the list of available tilesets.
Creating a new tileset is as simple as right-clicking on the empty area in the level content treeview
and choosing to add a new TilesetNode which was described in section 5.3.1 on page 36.

Since the tileset in question, Laboratory, is already listed in the file, it will already be available,
but after creating a new tileset, one should create a folder under the Content/Tilesets folder with
the same name as the tileset (in this case Laboratory).

Step 4.2: Adding a Tile to a Tileset

The creation of tiles is where all the previous work is finally put together in a single, coherent
structure, which eventually ends up in the game as a tile. When the game is first set up to use a
tileset, it will automatically pick up any new tiles added to that tileset. More on that in the next
step about using the tileset in the game.

To create the turbine generator tile, the level creator clicks New→New Tile..., selects the Lab-
oratory tileset, chooses that the tile is of type End, and types in the name of the tile, seen in the
sketch to be ”end-turbinegenerators”. The new tile is now created and BACON looks as can be
seen in figure 7.8, ready to receive input. They now click File→Save as... to save the new
tile, which is done in the tileset folder, which in this case is Content/Tilesets/Laboratory.

The first item of business is giving the tile a floor texture, which is done by selecting the auto-
matically added TileInfoNode, which is named the same as the tile was named. Using the Texture
drop-down to select one of the available textures, and the texture size and offset properties if ap-
propriate, the texture is assigned.

Creating the walls in a tile is done in a similar manner to creating the physics polygons in an
asset, and as such is done using the Polygon creation tool, though this time with PolyWallNode
selected in the drop-down. Afterwards, an important extra step is to assign a height as well as
top and wall textures to the new wall. The values of the last selected wall are remembered for
the next wall, and as such the level creator will most often only set these values specifically once
per type of wall they draw. Each of these wall nodes (here there is only one) are now given names
and put into the TileInfoNode using drag-and-drop.

Once the basic geometry is done, the level creator drags the assets they created in the previous
step and drops it onto the empty space in the level content tree-view. This copies the data from

Oblivious Rampaging Zombies And Monkeys 75

Chapter 7. The ORZAM Game

Figure 7.9: BACON with the first inserted asset selected, showing the automatic selection of all
sub-items, as well as the white anchor of the top node.

Figure 7.10: BACON with everything selected, showing bounding boxes and anchors for all nodes
in the tile.

76 ORZAM

7.6. ASSET WORK

the asset into the level, and this is where it comes in handy, that everything in the asset was put
under a single top node, as this node can now be moved around and the whole asset, including
model, lights and physics polygon, is moved around in the scene in accordance (figure 7.9 on the
preceding page). This is now used to position the asset in the scene, and repeated for all four
turbine generators.

Any extra lights required in the tile can be added now, as all the geometry is in place. In this
particular tile, no extra lighting is required, as the turbine generators have a lot of light on them
already, and illuminate the tile fine on their own. Otherwise lighting is added in the same way
as when creating assets - indeed, the lighting of specific assets can be changed as well, as they
are copied data and not instances of the asset file.

Finally, once the entire tile is completed, SpawnPointNodes are added. This tells the engine
where it is possible to spawn certain things, such as ammunition, weapons, zombies and so on.
A special type, named Random, is selected by default, telling the engine that it is allowed to do
anything it wishes with those points, but specific values can be set, and should be, when they
make sense in the level. In this example, SpawnPointNodes of type Ammunition and Weapon
are positioned in the points indicated on the sketch (figure 7.4 on page 72), and all other points
are left as Random.

The tile is now completed, and the final result, with everything in the tile selected in the tree-
view, is shown in figure 7.10 on the preceding page.

A Note on Special Tile Types: In ORZAM there are two special tiletypes: Start and End tiles.
These are essentially normal tiles, however they are different in the way that they must be End
tiles, they have the Special Type parameter set to either Start or End, and in the case of Start
tiles, they have a number of SpawnPointNodes with type Player. Once the player enters an End
tile in the game, the game registers that they have completed that level.

Finally, rather than putting them alongside the normal tiles, they are put into an extra sub-
folder inside the tileset folder - in the case of the Laboratory tileset the folder Content/Tileset-
s/Laboratory/Special.

Step 5: Using The Tileset in The Game

In the game, the TilesetHandler class takes care of actually reading the tiles from disc, and
assign them randomly to the LevelGenerator’s tiles. To use a specific tileset, the code in the
game sets TilesetHandler.CurrentTileset to the name of the tileset, which should always be a
value from the TilesetHandler.AvailableTilesets list. The following snippet shows the selection
of the active tileset in the game:

Listing 7.2: GamePrototype/GUI/Screens/StatusScreen.cs
public static void LoadTileset(ContentManager content)
{

TilesetWrapper wrapper = content.Load<TilesetWrapper>(TILESET_FILE);
TilesetManager.TileSets.AddRange(XmlTest.LoadTest(wrapper.Tilesets).Where(x => x is TilesetNode).Cast<

TilesetNode>());
TilesetManager.Tiles = wrapper.Tiles;
TilesetManager.SpecialTiles = wrapper.SpecialTiles;

foreach (var item in TilesetManager.TileSets)
if (item.Name == "Laboratory")

TilesetManager.CurrentTileset = item;
}

Note that the current implementation is hardcoded to use the Laboratory tileset in all three
levels, but this can be changed very easily, as this is the only place where the name is ever
present in the code. Should the game programmer wish, it is trivial to change the tileset for a
specific level.

7.6 Asset Work

In this section we will describe the different assets found in the game. Each of these were created
in either 3D Studio Max or Softimage|XSI and then imported into the game engine. The assets

Oblivious Rampaging Zombies And Monkeys 77

Chapter 7. The ORZAM Game

were created using a modeling technique called box modeling which simply is a way to extrude
a polygon face and adjusting its size and position, and then repeat the steps until the model
looks the way it was intended to. Some iterations of this method can be seen for the zombie bear
model 7.11.

7.6.1 Character and power-ups

The main villain of the game is the Zombie Bear, this character is shown in figure 7.13 on the
next page from its humble start as a primitive cylinder, to its present fear inspiring persona.

Figure 7.11: Showing the Zombie Bear from its start as a cylinder primitive.

Another enemy in the game is the cannon which shoots the morphing zombies at the player, it
can be seen in figure 7.12 on the facing page.

Our hero the Segway driving, gun-wielding, radar capped, backpacking and spectacled monkey
can be seen on figure 7.13 on the next page.

For the hero to have any hope of surviving the hordes of zombies, different kinds of power-ups
were needed. These include health, ammo, and weapons. The game comes with a complete
arsenal of weaponry, ranging from the pistol to the fully automatic M4 assault rifle, and topping
it of is the Segway mounted minigun. Health and ammo packs can be seen in figure 7.14 on
page 80, while a render of the weapons is seen in figure 7.15 on page 80.

78 ORZAM

7.6. ASSET WORK

Figure 7.12: The former Defence-O-Magic cannon which unfortunatly had been turned into an
instrument of evil (now shooting the morphing zombie bears).

Figure 7.13: The Hero monkey on a Segway.

Oblivious Rampaging Zombies And Monkeys 79

Chapter 7. The ORZAM Game

Figure 7.14: Ammo and a health box.

Figure 7.15: The weapons of the game. Left column: Beretta, Uzi and Shotgun. Right column:
Garand, M4 and Minigun.

80 ORZAM

7.6. ASSET WORK

The power-up timers, as seen in figure 7.16, are displayed when an item is waiting to be
respawned. The idea is to have three different models symbolizing the amount of time left. The
first is the red countdown face, which is unhappy as it knows that there is still a long time before
the item will reappear. This tells the player that there is no sense in lingering in the area just
yet. The middle variant is the yellow discomfort face, which really does not know if it is worth
waiting or moving on. Lastly we have the green happy face, telling the player that the power-up
is about to spawn any second.

Figure 7.16: Red, yellow and green powerup timers.

7.6.2 Static assets

Multiple static assets were created and then imported into the game editor. To create a classic
horror setting, the bathroom, a toilet is needed which can be seen on figure 7.17. We also need
a dumpster, which can be seen on the right in the same figure.

Figure 7.17: Showing the toilet with the lid in a up and downward position and a large dumpster
with various garbage and SpamTM.

In figure 7.18 on the following page we have the have the tables and a computer which com-
bined can be use to create an office environment such as the cubicle hell seen in 6.2 on page 60.
The tables alone can be used to create a cafeteria environment, as shown in the sketches in
appendix A on page 94.

Every mad scientist has to have power and thus multiple kinds of power generators were made,
some fictitious, other real. Mad scientists are friendly to the environment, so at least one of them
has to be a turbine. Regular power generators will also do. Both types can be seen in figure 7.19
on the next page.

The Tokamak generator is still in a testing stage in reality, but this makes it an excellent asset
for the game, as the scientist is not constrained by reality. All that power has to be used on
something, thus the Tesla coil. Both the Tokamak generator and the Tesla coil can be seen in
figure 7.20 on the following page.

With all the more normal assets done, it is time to show the mad scientist’s true colors. This
is done by placing a lot of doomsday devices in his lab. Of course he has to have a nuclear

Oblivious Rampaging Zombies And Monkeys 81

Chapter 7. The ORZAM Game

Figure 7.18: The two tables in the game, one plain and one with a sink, and a computer showing
Blue Screen of Death.

Figure 7.19: A turbine and a small and a medium power generator.

Figure 7.20: The Tokamak generator to the left, and a Tesla coil to the right.

82 ORZAM

7.7. SPECIAL EFFECTS

bomb, seen to the right in figure 7.21. When the scientist is done with this world he can wreak
destruction on nearby star systems with his Star Tracer device seen to the left in the figure. If
that is not enough the Ludicrous Dooms Day Device, seen in figure 7.22, can dish out some
doom on the rest of the doomed universe.

Figure 7.21: The Star Tracer and the Fat Boy.

Figure 7.22: The Ludicrous Doomsday Device.

Last but not least, no game would be complete without the game classic, the crate. Crates
like these have found their way into many games over time, among others can be noted Doom
and Half-life. Thus they should not be left out of our game and consequently can be seen in
figure 7.23 on the next page.

7.7 Special Effects

To spice up ORZAM some special effects have been added to the game. These special effects are
described in the following sections.

Oblivious Rampaging Zombies And Monkeys 83

Chapter 7. The ORZAM Game

Figure 7.23: Storage Crates (and maybe a box).

7.7.1 Particle System

A particle system is a system which emits and controls particles in the game world. Typically the
particle system will allow the creation of emitters that can create particles at a certain point and
give them a direction and speed. The direction and speed are often randomized so that objects
are sprayed out from the emitting point. The particle system will update the emitted particles
and move them according to the rules of the system. It will also make sure that particles are
removed from the game world when they are no longer needed.

7.7.2 Blood Particles

Whenever an enemy is hit in the game the Blood Particles system will emit blood particles. The
particles will originate from the point where the enemy’s bounding circle is hit offset at a fixed
height above the floor. The direction of the particles is based on the direction of the shot that hit.
Each particle will have a jitter added to its direction so the particles are sprayed randomly. Blood
particles will move in their designated direction, slowly changing the direction to point towards
the floor over time, making the blood particles move in an arc from the emitting point and towards
the floor. Whenever a blood particle hits the floor it will be removed from the system and for every
50 particles removed in this way a blood spatter will be drawn on the floor. The textures used for
the blood spatter is generated using the Blood Spatter Generator. Blood particles are rendered
as points.

7.7.3 Blood Spatter Generator

Since so many other items in ORZAM are procedurally generated, creating blood spatter textures
in a graphics program seemed like the wrong way to go. So, a blood spatter texture generator
was devised, inspired in part by the work by O’Brien and Hodgins[6] on computer simulated
splashing fluids, which is based on creating dynamic simulations of fluid systems, including
splash effects in pools of liquid.

The simplified approach used in the blood spatter generator is shown in listing C.3 on page 102,
and some sample output can be seen in figure 7.24 on the next page.

7.7.4 Traces

For every five shots fired in the game a trace particle will be emitted from the fired weapon. Trace
particles will move in the direction of the shot being fired and will be removed from the system
once they have traveled the distance to the first object being hit by the shot. Traces are rendered
as red line segments. In addition to rendering the line segment a red point light will also be
placed at the position of each particle.

84 ORZAM

7.8. GAME STATE IMPLEMENTATION

Figure 7.24: Various sample outputs from the blood spatter generator.

7.7.5 Sparks

Sparks are emitted whenever a shot hits a wall or a zombie cannon. Their direction will be found
by reflecting the direction of the shot around the normal to the object being hit and then adding
some jitter. Like blood particles sparks will slowly change their direction to point towards the
floor. Sparks will be removed after having existed a certain amount of time or whenever they
hit the floor. Sparks are rendered as wheat-colored line segments and will have a wheat-colored
point light placed at their position.

7.8 Game State Implementation

The section describes the graphical user interface (GUI) implementation of ORZAM and how it
is used to manage game states. The implementation is built using the engine Screen System,
which is described in section 5.8 on page 57.

XNA provides support for easily drawing bitmaps to the screen. This also includes sprite fonts
for drawing text strings. However, XNA does not provide any high-level tools for building GUIs,
so implementing GUIs does require quite a few lines of code.

The thoughts behind the GUI were to keep it simple. We only wanted a GUI, which has the
most basic functionality, for example starting a game, setting up controls, the number of players
and sufficient functionality to support the gameplay.

7.8.1 Class Organization

The GUI-implementation is spread across a number of classes, which all extend the abstract
GameScreen base class. The following classes are implemented:

MainMenuScreen.cs

A rather simple class, which draws a string array containing menu options centered on the
screen. Menu navigation is done by manipulating an index, which keeps track of the currently
selected menu option, which is displayed in a different color than the other menu option.

The class can be seen in use as (1) in figure 7.25 on page 88.

Oblivious Rampaging Zombies And Monkeys 85

Chapter 7. The ORZAM Game

ConfigureControlsScreen.cs

This class provides functionality for setting up keyboard controls for two players.
All keyboard controls are represented in a class which is called PlayerControl. It contains ar-

rays of keyboard keys for the players and a corresponding string array with in-game descriptions
of the key functions.

The ConfigureControlsScreen class can load and save a PlayerControl object, by using the
binary serialization feature of .NET. The ConfigureControlsScreen class provides a visual repre-
sentation of a PlayerControl object by drawing it to the screen. It also provides functionality for
receiving input and changing the keyboard key values in the PlayerControl object.

The class can be seen in use as (3) in figure 7.25 on page 88.

DialogueScreen.cs

This class is a simple pop-up dialogue, which can be used in two ways:

1. Display an array of menu options and return the name of the menu option being selected
by a user. This can be seen on the pictures (2, 4, 5, 8) in figure 7.25 on page 88.

2. Display a string and return which keyboard key the user presses as a string. This func-
tionality is used in conjunction with the ConfigureControlsScreen class, where the user is
presented with dialogs containing text such as ”Press a new key for player 1 fire”. This can
be seen in (6) in figure 7.25 on page 88.

Contrary to the other GUI classes, the DialogueScreen is intended to be rendered on top of
another screen, instead of being rendered as full-screen. In practice this is done by exposing
XNA’s GraphicsDevice class’ ability to draw only to a specific region of the screen surface.

SetupGameScreen.cs

The SetupGameScreen class contains functionality for a primitive ”game lobby” for up to 4 play-
ers, using up to two different keyboard layouts or up to four gamepads. It takes a very simple
approach to selecting the number of players and which in-game controls they use. Players sim-
ply press their ”fire key” in order to join the game. The advantage of this approach is that it is
simple to handle multiple input devices.

The class can be seen in use as (7) in figure 7.25 on page 88.

StatusScreen.cs

This class has a higher coupling to the game logic, as opposed to the other GUI classes, which
for the most part is only used as presentation layer for the game logic.

StatusScreen has an instance of LevelGenerator (which is described in section 5.4 on page 38)
and it also takes a few parameters: The number of joined players, the chosen difficulty and the
current level. These parameters are used for generating a level and displaying the correct ”level
story”.

The class also displays a visual overview of the generated level, which serves as a help to
the players. The visual overview suggests two possible exits on the generated level. One of the
suggestions is correct and the other is misinformation. The point is to only provide a minor help,
in order to increase game difficulty.

The class can be seen in use as (10) in figure 7.25 on page 88. The visual level representation is
topmost and the level story is in the center.

InGameScreen.cs

This class contains our in-game logic, which is encapsulated in the GameWrapper class. So
this class is quite simple, because it mainly just calls the Update() and Draw() methods of the
GameWrapper.

86 ORZAM

7.9. AUDIO SYSTEM

However, InGameScreen does also contain functionality for an in-game dialog with the options
”Exit Game” and ”Resume Game”. It can be seen in figure 7.25 on the following page: InGame-
Screen as (9) and InGameScreen with dialog as (8).

7.8.2 Menu Navigation

This section describes the navigation in figure 7.25 on the next page.

From the main menu (1) there are three options:

1. It is possible to quit the game, which will present a ”Really Exit?” dialog (2).

2. It is also possible to change keyboard controls (3) (6), which has a feature for reminding the
user, if he changed something and did not save it before trying to return to the main menu
(5).

3. Finally is it possible to start the game. First the user is presented a dialog where game
difficulty must be selected (4).

After selecting game difficulty a simple ”game lobby” is presented, where players can join by
pressing the ”fire key” of whichever input device they are using.

With one or more joined players, the game can proceed. A ”status screen” with informations for
the first level is displayed (10). This consists of a text with a small story and a picture, which
gives an outline of the level, with starting position and two possible exits.

Pressing Enter on a keyboard or Start on a gamepad makes the game continue to the actual
in-game (9). Surviving a level and finding the exit will result in a ”level statistics” screen (11),
presenting various kill and damage statistics. Dying will result in a screen telling the player or
players to try again (12). Further navigation from both (11) and (12) will lead back to the status
screen, but only finding the exit will result in the status screen changing to the next level.

7.9 Audio System

The audio system in ORZAM is split into two parts - the generic sound effects and music playing
class AudioManager and the game-specific BearSoundsEmitter.

7.9.1 AudioManager

We implemented an AudioManager class because we experienced some crashes on machines
without sound devices. The AudioManager provides a simple interface to playing sounds, while
hiding any kind of error handling.

7.9.2 Bear Sounds Emitter

We created the BearSoundsEmitter class give the game a scary ambiance in the game. In short,
the class launches a quiet, random vicious bear sound, every one to three seconds, at a random
position around the player. It does however use advanced 3D audio positioning technology for
maximum effect.

Oblivious Rampaging Zombies And Monkeys 87

Chapter 7. The ORZAM Game

Figure 7.25: Graphical User Interface navigation.

88 ORZAM

CHAPTER

8

Conclusion

8.1 EGGS Engine as a Development Platform

This section evaluates the usage of the developed engine. We highlight strengths, weaknesses
and complications encountered during the development of the ORZAM game.

8.1.1 Specialized Engine

Because we built the engine with the purpose of creating the ORZAM game, it has features that
are specialized for creating this kind of game. The BACON editor was a big help in creating
content quickly and correctly.

The engine is designed for creating 2.5D games and should therefore be very reusable for these
kinds of games. However, if we were to use the game for creating a purely 3D game, parts of the
engine would need refactoring and several 3D specific features would have to be implemented
from scratch, for example 3D collision response.

8.1.2 Software Development Kit (The BACON editor)

Using the BACON editor is a quick way of building new game worlds, however because of its
short development cycle it is not complete. It lacks features such as undo and it has a tendency
of being somewhat unstable.

The implementation of scene graphs in the engine is very robust, such that changing or adding
node types does not invalidate previously created scene graphs. Also when adding new node
types they are automatically recognized by the BACON editor. Finally, the file representation is
XML and therefore easy to debug and understand.

8.1.3 Performance

The engine performs very badly on machines with low-end graphics devices. More optimization
is needed in the renderer of the engine. Also, guidelines are needed for content creators in order
to avoid slowdowns caused by too complex content.

The collision system in the engine is easy to use, but it has some problems when the game
is running slowly. Because the physics of the engine is time based, it has trouble with missed
collisions when the time steps become too large due to low framerates.

8.1.4 Content Support

The engine can handle a wide variety of different content, including skinned and animated 3D
models.

However, when the amount of content increases so does the time it takes to build the game and
levels. The editor’s content management system is not entirely compatible with Visual Studio’s
build engine. Even if the content has been built through the editor, Visual Studio will rebuild all
content when building the game. The same goes for the other way around.

8.1.5 Final Thoughts

While the engine is not production ready, it can easily be used to implement visually compelling
games. Because it is based on XNA it is also ready to be used for an Xbox 360 game, and is well
suited for this because of its support of spilt-screen gameplay and gamepad control schemes.

Oblivious Rampaging Zombies And Monkeys 89

Chapter 8. Conclusion

8.2 Conclusion

In the introduction 1 on page 8 we formulated a goal for this project. In this section we will
account for whether this goal was reached. The project goal was the following:

We want to get hands-on experience with game engines by implementing a game using
a game engine.

We have achieved this goal by creating our own game engine and used it to implement a fully
functional game, based on our initial game design document as specified in chapter 2 on page 9.

By developing our own game engine we have amassed hands-on experience with the inner
workings of game engines.

We consider involving content creators in the development of a game very important, which is
why we developed and used a Software Development Kit for this project. By doing so we believe
we followed a more realistic game development process.

8.3 Future Work

In this section we will describe our plans for future development of the engine and its SDK.

8.3.1 Further Optimization

Optimizing a rendering pipeline can be tricky. By not updating objects that are far away we
optimize the Application Stage, by not drawing objects that are outside the camera’s view frustum
we decrease the workload in the Geometry Stage, but the game is still slow on machines with
low-end graphics capabilities. This why we suspect the rasterizer of being overburdened.

As stated in Real-Time Rendering[1], this is easily verifiable, because the amount of work the
rasterizer needs to do is directly proportional with the amount of pixels it needs to shade. This
means that if lowering the screen resolution of the game increases the amount of rendered frames
per second, our bottleneck is in the Rasterizer Stage.

We ran a couple of tests using different resolutions on a machine with an ”ATI Radeon Mobility
X1800” graphics device, which supports Multiple Render Targets. Using 1024x768 the game ran
at 35 frames per second. Decreasing it to 640x480 resulted in 44 frames per seconds, and finally
a resolution of 320x240 yielded 61 frames per second.

Obviously the bottleneck of our game is in the rasterizer.
The reason our rasterizer is so heavily burdened is because of Deferred Shading. While the

technique has very nice properties, the main drawback of the technique is that it puts a lot of
load on the rasterizer, especially if the graphics device used to render the scene does not support
Multiple Render Targets very well. Some older graphics devices that do not support MRTs simply
run the pixel shader once per render target, which triples the workload of the rasterizer.

Also, our deferred shading algorithm uses per-pixel lighting exclusively with no fallback to
per-vertex lighting. To support more platforms we should develop fallback shading techniques.

Finally, the instruction count of the pixel shaders in our deferred shader implementation is
high. Some effort could be put into reducing the amount of instructions for example by using
less precise approximations.

8.3.2 Collision Detection Quirks

As stated in section 8.1 on the preceding page, the collision system does not handle low fram-
erate situations very well. This could be improved upon by either using fixed time steps or
implementing a more advanced time stepping algorithm.

90 ORZAM

8.3. FUTURE WORK

8.3.3 Product Polish

The engine and the editor could use more polish. That is more time spent on fine tuning features
and squashing bugs. One important example is adding an undo feature to the editor. Another ex-
ample is thoroughly testing the Xbox implementation of the engine. Finally, some documentation
would also be nice.

Oblivious Rampaging Zombies And Monkeys 91

BIBLIOGRAPHY

[1] Tomas Akenine-Möller and Eric Haines. Real-Time Rendering. A K Peters, second edition,
2002. 16, 17, 19, 20, 36, 46, 90

[2] Garret Foster at gamedev.net. Scene graph. http://www.gamedev.net/reference/
programming/features/scenegraph/. 14

[3] David Eberly. Intersection of linear and circular components in 2d, 2000. http://www.
geometrictools.com/Documentation/IntersectionLine2Circle2.pdf. 48, 50

[4] Shawn Hargreaves. Deferred shading, 2004. http://www.talula.demon.co.uk/
DeferredShading.pdf. 43, 44

[5] Microsoft. Xna creator’s club. http://creators.xna.com/. 42

[6] James F. O’Brien and Jessica K. Hodgins. Dynamic simulation of splashing fluids. In
Computer Animation ’95, pages 198–205, Atlanta, CA 30332-0280, April 1995. Georgia
Institute of Technology. 84

[7] James M. Van Verth and Lars M. Bishop. Essential Mathematics for Games & Interactive
Applications. Morgan Kaufman, second edition, 2008. 50

[8] Jon Watte. Kilowatt x-port. http://www.kwxport.org/. 52

[9] Wikipedia. Scene graph. http://en.wikipedia.org/w/index.php?title=Scene_graph\
&oldid=244200368. 14

[10] Catalin Zima. Deferred shading in xna, 2007. http://www.ziggyware.com/readarticle.
php?article_id=155. 42, 43

92 ORZAM

http://www.gamedev.net/reference/programming/features/scenegraph/
http://www.gamedev.net/reference/programming/features/scenegraph/
http://www.geometrictools.com/Documentation/IntersectionLine2Circle2.pdf
http://www.geometrictools.com/Documentation/IntersectionLine2Circle2.pdf
http://www.talula.demon.co.uk/DeferredShading.pdf
http://www.talula.demon.co.uk/DeferredShading.pdf
http://creators.xna.com/
http://www.kwxport.org/
http://en.wikipedia.org/w/index.php?title=Scene_graph\&oldid=244200368
http://en.wikipedia.org/w/index.php?title=Scene_graph\&oldid=244200368
http://www.ziggyware.com/readarticle.php?article_id=155
http://www.ziggyware.com/readarticle.php?article_id=155

Part I

Appendix

APPENDIX

A

Sketches

The next three pages contain the sketches of the tiles used in the game.

94 ORZAM

Oblivious Rampaging Zombies And Monkeys 95

Appendix A. Sketches

96 ORZAM

APPENDIX

B

Article: Write Games, Not Engines

The following article is from the blog at http://scientificninja.com. The author write the
following in his ”About” section at the webpage:

My name is Josh Petrie. I am a tools programmer in the game development industry. At some point
in the future, a pithy ”about the author” page will go here. Until such time as I find somebody who
I can bribe to write suitably wonderful things about me, you’ll have to make do with this sparse
substitute. Enjoy.

Write Games, Not Engines

To begin with, the term ”engine” (specifically as it related to the game development world) has
no strict definition. Therefore, in the interests of keeping everybody on the same page, I’ll define
the term as I intend to use it in this article. An ”engine” is a collection of robust, reusable
software subsystems (possibly including both code libraries and tools) designed to facilitate the
development of actual games by addressing specific requirements. The requirements tend to
be broadly-defined: rendering, audio, physics, et cetera. Particularly ambitious engines that
address multiple broad requirement groups tend be to known as ”game engines” rather than just
”graphics engines” or ”physics engines”.

Now that that’s out of the way, let’s turn to the real issue: how to build engines, and more
specifically, if you should even bother.

For any number of reasons, many neophyte game developers (and even some moderately experi-
enced ones) seem to think that a game engine is a required, critical part of a game. They think
that – in keeping with the mechanical analogy from which the term ”engine” comes from in the
first place – like a car, a game with no engine will simply not run. But that mechanical analogy
starts to break down when you take it this far, because when you look at the reality of the situ-
ation, a game engine is about reusable components. Much like you can build a car with custom
parts or generic ones, you can build a game with custom components or reusable ones. The fact
that you must have an engine to build a non-trivial game is a fallacy, something perpetuated
largely by people who don’t know any better.

Nonetheless, every so often comes the obligatory post on GDNet (A forum for game developers,
red.) by somebody who has decided its time for them to write their engine, so they can start
making some real games. These posts usually consist of requests for resources about the engine
design and development process, and in fact chances are that if you’re reading this, it’s because
I caught you making just such a post and linked you here so that I could crush your dreams
with a minimum of effort on my part.

So my advice to you, if you’re trying to write an engine, is: Don’t. No matter what your reasons
are – it doesn’t matter if you’re writing an engine so you can write your dream game, or if you’re
writing an engine because you think it will be a good learning experience, or any number of
similar reasons. They’re all wastes of time. You can sit down and write a game without writing a
pre-written engine, and in fact this is very often the better approach, regardless of why you want
to write an engine. The entire development process goes much more smoothly if you are focused
on writing a game instead: a game is much easier to identify requirements for, much narrower
in focused, much more rewarding when finished, and much, much more useful.

Most hobby developers who ”finish” an ”engine” that was designed and built in isolation (with
the goal of having an engine, not a game, upon completion) can’t ever actually use it, and neither
can anybody else. Since the project didn’t have any goals, any boundaries, or any tangible appli-
cations, it essentially attempted to solve aspect of the chosen problem space and consequently

Oblivious Rampaging Zombies And Monkeys 97

http://scientificninja.com

Appendix B. Article: Write Games, Not Engines

failed miserably. These ”engines” tend to be little more than an inconsistent and messy amalga-
mation of random functionality that isn’t terribly practical, robust or reusable. Furthermore, the
actual viewable end product of these ”engines” tend to be a cute little map (loaded from one of
the popular BSP formats) you can run around in and observe some cute little models (also loaded
from a popular model format) rendered with some fairly basic lighting effects (maybe some per-
pixel normal mapping or parallax mapping). Maybe you might even see some collision detection
or animation. These projects are just tech demos, and not particularly compelling ones at that.
There is nothing to them, and they feel rather flimsy and inflexible.

The solution, even if you really want to make an engine, is to make a game instead. I can hear
you crying out in protest from here, but just bear with me for a minute. The game does not
have to be an epic production. It does not have to be GTA5, Quake 17, the next Elder Scrolls
game, or a WoW-killer. It just has to be a game, with well-defined (and ideally well-thought-out)
gameplay and well-defined developmental scope. A game is much easier to identify requirements
for, as I’ve already mentioned, and it is also a practical application of those requirements. Once
you have made one game, make another. Then another. Each time you start a new project, you
should identify functionality that could be used and pull it out into a common library of base
code. You’ll probably have to refactor some of your code to remove explicit dependencies on other
code or data that is game specific, but this is a good thing. It will help you generalize what is
generalizable in a way that you can still test the generalized functionality against your finished
game and confirm that it still works (obviously you might have to modify some game-specific
code to adapt to the increased generality, as well).

If you repeat this process long enough, after a few games you’ll have the beginnings of a solid
collection of reusable functionality that has been proven to have practical applications. You’ll
also have a set of far more interesting demonstration applications that could also double as test
harnesses for your engine. This method of growing an engine (rather than manufacturing it
from whole cloth) is superior because it helps you shape your goals, it forces you to actually
think about the problems you will face and their practical implementations, it forces you to think
about the separation between the domain-specific logic of the engine and the game. It makes
you learn from your mistakes rather than pretend that mistakes cannot be made.

98 ORZAM

APPENDIX

C

Code Examples

C.1 Node Reflector Class

Listing C.1: Loading a Scene Graph from an XmlDocument
1 // This is the function we call to load a scene graph
2 public static NodeList LoadScene(XmlDocument loadDoc)
3 {
4 NodeList nodes = new NodeList(null);
5 LoadRecursively(nodes, loadDoc.DocumentElement.ChildNodes);
6 return nodes;
7 }
8
9 public static void LoadRecursively(NodeList targetList, XmlNodeList xmlNodes)

10 {
11 foreach (XmlNode xmlNode in xmlNodes)
12 {
13 XmlElement element = xmlNode as XmlElement;
14
15 // Not an element or doesn’t have a Name attribute, then ignore this element
16 if (element == null || !element.HasAttribute("Name"))
17 continue;
18
19 SceneNode node;
20
21 // If we cant instantiate the node, then continue to next xml element
22 if (!NodeReflector.TryInstantiate(element.Name, element.Attributes["Name"].Value, out node))
23 continue;
24
25 // Set the Properties of this node from using the XML
26 node.SetFromXml(element);
27
28 // Put it in our list
29 targetList.Add(node);
30 }
31 }
32
33 public static class NodeReflector
34 {
35 public static bool TryInstantiate(string type, string name, out SceneNode n)
36 {
37 n = null;
38 foreach (var t in NodeTypes)
39 {
40 if (t.Name != name)
41 continue;
42
43 // Get a constructor on the type that takes one string argument, and then invoke it with name as

the argument
44 n = t.GetConstructor(new Type[] { typeof(string) }).Invoke(new object[] { name }) as SceneNode;
45 }
46 return n != null;
47 }
48
49 // Ensures that we only find the types we need once (singleton-ish)
50 public static List<Type> NodeTypes
51 {
52 get
53 {
54 if (nodeTypes == null)
55 FillTypeList();
56
57 return nodeTypes;
58 }
59 }
60 private static List<Type> nodeTypes = null;
61
62 // Runs through all loaded assemblies (.exe and .dll files), and finds all types that extend SceneNode.
63 private static void FillTypeList()
64 {
65 nodeTypes = new List<Type>();
66 foreach (Assembly a in AppDomain.CurrentDomain.GetAssemblies())
67 {

Oblivious Rampaging Zombies And Monkeys 99

Appendix C. Code Examples

68 try
69 {
70 foreach (Type t in a.GetTypes())
71 {
72 if (t == typeof(SceneNode) || t.IsSubclassOf(typeof(SceneNode)))
73 nodeTypes.Add(t);
74 }
75 }
76 catch { }
77 }
78 }
79 }

C.2 The LevelGenerator.CreateTile function

Listing C.2: The CreateTile(int xPos, int yPos)
209 private void CreateTile(int xPos, int yPos)
210 {
211 LevelTile newTile;
212
213 if (LevelTiles[xPos, yPos] == null)
214 {
215 newTile = new LevelTile(xPos - MaxTiles, yPos - MaxTiles);
216 LevelTiles[xPos, yPos] = newTile;
217 CreatedTiles.Add(newTile);
218 }
219 else
220 return;
221
222 // Find forced edges in adjoining tiles
223 FindForcedEdges(xPos, yPos, newTile);
224
225 // Find an appropriate tile in our list of available tiles
226 newTile.RandomizeTile(this.availableSceneNodes);
227
228 // Which edges still don’t have a defined edge (as either edge or blocked)
229 List<Rotation> availableEdges = new List<Rotation>();
230 if (newTile.TopEdge == EdgeState.None)
231 availableEdges.Add(Rotation.Up);
232 if (newTile.RightEdge == EdgeState.None)
233 availableEdges.Add(Rotation.Right);
234 if (newTile.BottomEdge == EdgeState.None)
235 availableEdges.Add(Rotation.Down);
236 if (newTile.LeftEdge == EdgeState.None)
237 availableEdges.Add(Rotation.Left);
238
239 // We might as well bail out here in stead of making a whole lot of calculations and instantiations

below...
240 if (availableEdges.Count == 0)
241 return;
242
243 // Shuffling
244 int n = availableEdges.Count;
245 Rotation temp;
246 while (n > 1)
247 {
248 int k = Util.Random.Next(n);
249 n--;
250 temp = availableEdges[n];
251 availableEdges[n] = availableEdges[k];
252 availableEdges[k] = temp;
253 }
254
255 // How many edges do we need to worry about
256 int newEdges = availableEdges.Count;
257
258 // ...of course make sure we don’t make too many tiles
259 if (AverageTiles - CreatedTiles.Count < newEdges)
260 newEdges = AverageTiles - CreatedTiles.Count;
261
262 // Make sure newEdges stays above -1
263 newEdges = (newEdges < 0) ? 0 : newEdges;
264
265 // If we’ve been capped, we need to make sure the level actually ends somewhere!
266 if (newEdges != availableEdges.Count)
267 {
268 newTile.TopEdge = (newTile.TopEdge == EdgeState.None) ? EdgeState.Blocked : newTile.TopEdge;
269 newTile.RightEdge = (newTile.RightEdge == EdgeState.None) ? EdgeState.Blocked : newTile.

RightEdge;

100 ORZAM

C.2. THE LEVELGENERATOR.CREATETILE FUNCTION

270 newTile.BottomEdge = (newTile.BottomEdge == EdgeState.None) ? EdgeState.Blocked : newTile.
BottomEdge;

271 newTile.LeftEdge = (newTile.LeftEdge == EdgeState.None) ? EdgeState.Blocked : newTile.LeftEdge;
272 return;
273 }
274
275 int bushiness = 50;
276 // Figure out what edges should be along the tile at the available sides
277 for (int i = 0; i < newEdges; i++)
278 {
279 switch (availableEdges[i])
280 {
281 case Rotation.Up:
282 if (Util.Random.Next(100) < bushiness && CreatedTiles.Count < MaxTiles)
283 {
284 newTile.TopEdge = EdgeState.Edge;
285 newTile.TileAbove = LevelTiles[xPos, yPos - 1];
286 }
287 else
288 newTile.TopEdge = EdgeState.Blocked;
289 break;
290 case Rotation.Right:
291 if (Util.Random.Next(100) < bushiness && CreatedTiles.Count < MaxTiles)
292 {
293 newTile.RightEdge = EdgeState.Edge;
294 newTile.TileRight = LevelTiles[xPos + 1, yPos];
295 }
296 else
297 newTile.RightEdge = EdgeState.Blocked;
298 break;
299 case Rotation.Down:
300 if (Util.Random.Next(100) < bushiness && CreatedTiles.Count < MaxTiles)
301 {
302 newTile.BottomEdge = EdgeState.Edge;
303 newTile.TileBelow = LevelTiles[xPos, yPos + 1];
304 }
305 else
306 newTile.BottomEdge = EdgeState.Blocked;
307 break;
308 case Rotation.Left:
309 default:
310 if (Util.Random.Next(100) < bushiness && CreatedTiles.Count < MaxTiles)
311 {
312 newTile.LeftEdge = EdgeState.Edge;
313 newTile.TileLeft = LevelTiles[xPos - 1, yPos];
314 }
315 else
316 newTile.LeftEdge = EdgeState.Blocked;
317 break;
318 }
319 }
320
321 // Create the new adjoining tiles
322 for (int i = 0; i < newEdges; i++)
323 {
324 switch (availableEdges[i])
325 {
326 case Rotation.Up:
327 if (newTile.TopEdge == EdgeState.Edge)
328 CreateTile(xPos, yPos - 1);
329 break;
330 case Rotation.Right:
331 if (newTile.RightEdge == EdgeState.Edge)
332 CreateTile(xPos + 1, yPos);
333 break;
334 case Rotation.Down:
335 if (newTile.BottomEdge == EdgeState.Edge)
336 CreateTile(xPos, yPos + 1);
337 break;
338 case Rotation.Left:
339 default:
340 if (newTile.LeftEdge == EdgeState.Edge)
341 CreateTile(xPos - 1, yPos);
342 break;
343 }
344 }
345
346 // Ensure the edges are fully punched through
347 FindForcedEdges(xPos, yPos, newTile);
348 }

Oblivious Rampaging Zombies And Monkeys 101

Appendix C. Code Examples

C.3 The BloodGenerator class

Listing C.3: GameEngine/TextureGeneration/BloodGenerator.cs
1 using System;
2 using System.Collections.Generic;
3 using System.Linq;
4 using System.Text;
5 using Microsoft.Xna.Framework.Graphics;
6 using Microsoft.Xna.Framework;
7
8 namespace GameEngine.TextureGeneration
9 {

10 public class BloodGenerator : ITextureGenerator
11 {
12 /// <summary>How much liquid are we throwing at the surface in ml (influences the size of the blood

spatter)</summary>
13 private int liquidAmount;
14 public int LiquidAmount
15 {
16 get { return this.liquidAmount; }
17 set { this.liquidAmount = (int)MathHelper.Clamp(value, 20f, 8192); }
18 }
19
20 /// <summary>The angle of the surface we have splattered blood upon. 0 is floor, PiOver2 is a wall.</

summary>
21 private float slope;
22 public float Slope
23 {
24 get { return this.slope; }
25 set { this.slope = MathHelper.Clamp(value, 0f, MathHelper.PiOver2); }
26 }
27
28 private Texture2D texture;
29 private int realTextureSize;
30 public int TextureSize { get { return this.realTextureSize; } }
31 private GraphicsDevice gd;
32 public GraphicsDevice GraphicsDevice { set { this.gd = value; } }
33
34 private float[,] bloodTiles;
35 private int canvasSize;
36
37 /// <summary>
38 /// Create a blood generator, which by default will create a circular blood spatter
39 /// </summary>
40 /// <param name="gd">The painting graphics device</param>
41 public BloodGenerator(GraphicsDevice gd)
42 {
43 this.LiquidAmount = 1024;
44 this.Slope = 0;
45 this.gd = gd;
46 }
47
48 private void PaintDot(int xPos, int yPos, double amount, int dataWidth, Color[] data)
49 {
50 float redAmount = (float)(amount * 5d);
51
52 Color redColor = new Color(1f, 0f, 0f, redAmount);
53
54 data[(xPos * dataWidth) + yPos] = redColor;
55
56 /*if (xPos == dataWidth - 1)
57 data[(xPos * dataWidth) + yPos] = Color.Black;
58 if (yPos == dataWidth - 1)0
59 data[(xPos * dataWidth) + yPos] = Color.Black;*/
60 }
61
62 private void Iterate()
63 {
64 float seepageDiagonal = .6f;
65 float seepageSlopeAdjustmentUp = 1f - (this.slope / MathHelper.PiOver2);
66 float seepageSlopeAdjustmentDown = 1f + seepageSlopeAdjustmentUp;
67
68 float currentSeepage, diagonalSeepage;
69 int xPos, yPos;
70 for (int j = 0; j < this.canvasSize - 2; j++)
71 {
72 for (int i = 0; i < this.canvasSize - 2; i++)
73 {
74 xPos = j + 1;
75 yPos = i + 1;
76
77 if (bloodTiles[xPos, yPos] > 0)
78 {

102 ORZAM

C.3. THE BLOODGENERATOR CLASS

79 currentSeepage = bloodTiles[xPos, yPos] / 10f;
80 diagonalSeepage = currentSeepage * seepageDiagonal;
81 // y-1
82 {
83 // x-1
84 bloodTiles[xPos - 1, yPos - 1] += (diagonalSeepage * seepageSlopeAdjustmentUp);
85 // x
86 bloodTiles[xPos, yPos - 1] += (currentSeepage * seepageSlopeAdjustmentUp);
87
88 // x+1
89 bloodTiles[xPos + 1, yPos - 1] += (diagonalSeepage * seepageSlopeAdjustmentUp);
90
91 bloodTiles[xPos, yPos] -= 3 * (diagonalSeepage * seepageSlopeAdjustmentUp);
92 }
93
94 // y
95 {
96 bloodTiles[xPos - 1, yPos] += currentSeepage;
97 bloodTiles[xPos + 1, yPos] += currentSeepage;
98 bloodTiles[xPos, yPos] -= 2 * currentSeepage;
99 }

100
101
102 // y+1
103 {
104 // x-1
105 bloodTiles[xPos - 1, yPos + 1] += (diagonalSeepage * seepageSlopeAdjustmentDown);
106 // x
107 bloodTiles[xPos, yPos + 1] += (currentSeepage * seepageSlopeAdjustmentDown);
108 // x+1
109 bloodTiles[xPos + 1, yPos + 1] += (diagonalSeepage * seepageSlopeAdjustmentDown);
110
111 bloodTiles[xPos, yPos] -= 3 * (diagonalSeepage * seepageSlopeAdjustmentDown);
112 }
113 }
114 }
115 }
116 }
117
118 #region ITextureGenerator Members
119
120 public void Generate()
121 {
122 canvasSize = (this.LiquidAmount / 10);
123 int halfWidth = canvasSize / 2;
124
125 int spatterCount = this.liquidAmount / 30;
126 int spatterAmount = (int)((float)this.LiquidAmount / (float)spatterCount);
127 int spatterRadius = (int)((float)halfWidth * 0.60f);
128
129 realTextureSize = 2;
130 do
131 realTextureSize *= 2;
132 while (realTextureSize < canvasSize);
133 // SurfaceFormat.Vector4 = alpha, blue, green, red
134 this.texture = new Texture2D(gd, realTextureSize, realTextureSize, 0, TextureUsage.None,

SurfaceFormat.Color);
135
136 this.bloodTiles = new float[canvasSize, canvasSize];
137
138 int xPos, yPos;
139 double angle, currentRadius;
140 for (int i = 0; i < spatterCount; i++)
141 {
142 angle = Util.Random.NextDouble() * (2 * MathHelper.Pi);
143 currentRadius = ((double)i / (double)spatterCount) * (double)spatterRadius;
144
145 xPos = (int)Math.Ceiling((currentRadius * Math.Cos(angle)));
146 yPos = (int)Math.Ceiling((currentRadius * Math.Sin(angle)));
147
148 // Add an appropriate amount of liquid (that is, the amount of blood in a single spatter)
149 bloodTiles[xPos + halfWidth, yPos + halfWidth] += spatterAmount;
150 }
151
152
153 for (int i = 0; i < spatterCount / 4; i++)
154 {
155 this.Iterate();
156 }
157 }
158
159 public Texture2D GetTexture()
160 {
161 if (texture == null)
162 this.Generate();

Oblivious Rampaging Zombies And Monkeys 103

Appendix C. Code Examples

163
164 float maxAmount = 0f;
165 for (int i = 0; i < this.canvasSize; i++)
166 {
167 for (int j = 0; j < this.canvasSize; j++)
168 {
169 maxAmount = (bloodTiles[i, j] > maxAmount) ? bloodTiles[i, j] : maxAmount;
170 if (maxAmount > 5f)
171 break;
172 }
173 if (maxAmount > 5f)
174 break;
175 }
176
177 Color[] data = new Color[realTextureSize * realTextureSize];
178 for (int i = 0; i < data.Length; i++)
179 data[i] = Color.TransparentBlack;
180
181 int offset = (realTextureSize - canvasSize) / 2;
182
183 double theDot, theValue;
184 for (int i = 0; i < this.canvasSize; i++)
185 {
186 for (int j = 0; j < this.canvasSize; j++)
187 {
188 theDot = (double)MathHelper.Clamp(this.bloodTiles[i, j], 0f, 5f);
189 theValue = theDot / (double)maxAmount;
190 PaintDot(i + offset, j + offset, theValue, this.realTextureSize, data);
191 }
192 }
193
194 texture.SetData(data);
195 texture.GenerateMipMaps(TextureFilter.Linear);
196 return this.texture;
197 }
198
199 #endregion
200 }
201 }

C.4 XmlTilesetImporter Import Function

Listing C.4: Importing Tilesets
1 public override TilesetWrapper Import(string filename, ContentImporterContext context)
2 {
3 XmlDocument doc = new XmlDocument();
4 doc.Load(filename);
5 NodeList nodes = XmlTest.LoadScene(doc);
6
7 TilesetWrapper wrapper = new TilesetWrapper();
8 wrapper.Tilesets = doc;
9

10 foreach (var node in nodes)
11 {
12 TilesetNode n = node as TilesetNode;
13 if (n == null)
14 continue;
15
16 if (!wrapper.Tiles.ContainsKey(n.Name))
17 wrapper.Tiles.Add(n.Name, new Dictionary<TileType, List<XmlDocument>>());
18
19 if (!wrapper.SpecialTiles.ContainsKey(n.Name))
20 wrapper.SpecialTiles.Add(n.Name, new Dictionary<SpecialTileNodeType, List<XmlDocument>>());
21
22 foreach (var file in Directory.GetFiles(Path.Combine(Path.GetDirectoryName(filename), n.Name), "*.xml",

SearchOption.AllDirectories))
23 {
24 try {
25 XmlDocument t = new XmlDocument();
26 t.Load(file);
27 context.AddDependency(file);
28 List<SceneNode> tNodes = XmlTest.LoadTest(t);
29 TileInfoNode tn = tNodes.FirstOrDefault(x => x is TileInfoNode) as TileInfoNode;
30
31 if (tn == null)
32 {
33 context.Logger.LogWarning("", new ContentIdentity(Path.GetFullPath(file)), "Could not add

tile: Xml does not contain a TileInfoNode");
34 continue;
35 }

104 ORZAM

C.4. XMLTILESETIMPORTER IMPORT FUNCTION

36
37 if (tn.SpecialType == SpecialTileNodeType.None)
38 {
39 if (!wrapper.Tiles[n.Name].ContainsKey(tn.TileType))
40 wrapper.Tiles[n.Name].Add(tn.TileType, new List<XmlDocument>());
41 wrapper.Tiles[n.Name][tn.TileType].Add(t);
42 }
43 else
44 {
45 if (!wrapper.SpecialTiles[n.Name].ContainsKey(tn.SpecialType))
46 wrapper.SpecialTiles[n.Name].Add(tn.SpecialType, new List<XmlDocument>());
47 wrapper.SpecialTiles[n.Name][tn.SpecialType].Add(t);
48 }
49 }
50 catch(Exception e)
51 {
52 context.Logger.LogWarning("", new ContentIdentity(Path.GetFullPath(file)), "Could not add tile:

{0}", e.Message);
53 }
54 }
55 }
56 return wrapper;
57 }

Oblivious Rampaging Zombies And Monkeys 105

	Introduction
	Report Structure

	Game Design Document
	Key Concepts
	The Setting
	Background Story

	Gameplay
	Design Summary

	Game Engines
	Game Engine Fundamentals
	Motivation
	Typical Features
	Specialization
	How our game would use a game engine
	Scene Graph

	Graphics Rendering
	The Application Stage
	The Geometry Stage
	The Rasterizer Stage
	Shading

	Animation
	Physics
	Collision Response
	Time Stepping

	Game Engine Selection
	Choice of Platform and Technology
	The XNA Framework
	Components

	The EGGS Engine
	What XNA Provides
	Application Model
	Graphics Device Management
	Content Import
	Audio
	Input
	Math for 3D games

	Scene Graph
	Saving a Scene Graph
	Loading a Scene Graph
	Interesting Node Types

	Tile Engine
	Data Representation
	Loading
	Updating and Drawing
	Optimization

	Level Generator
	The LevelTile class

	Lighting and Shading
	Deferred Shading
	Clearing the G-Buffer
	Rendering Geometry to the G-Buffer
	Applying Lighting
	Putting It All Together

	Physics
	2D collision system
	Circle / Circle collision
	Circle / Polygon
	2D Rays
	3D collision system
	Tile Engine Collision System

	Animation
	Exporting in Autodesk 3D Studio Max
	Exporting in Blender
	Exporting in Softimage|XSI
	Importing Models into XNA
	Playing Animation At Runtime

	Screen System
	GameScreen.cs
	ScreenController.cs

	The BACON Editor
	The GUI
	Toolbar
	Available Content
	Tabbed Document Section

	Tools
	Selection Tool
	Polygon Drawer Tool
	Scaling Tool
	Rotate Tool
	Move Tool
	Polygon Modifier Tool

	Selected Implementation Details
	Property Grid
	Build Content Dialog
	Toolbar and EditorControl Hookup

	The ORZAM Game
	ORZAM Overview
	Game Architecture
	Populating the game world
	Position Type Spawn Points
	Supply Type Spawn Points
	Respawning of items
	Dynamically generated spawn points

	Movement and Physics
	Player movement
	Enemy movement

	Tileset Development
	Asset Work
	Character and power-ups
	Static assets

	Special Effects
	Particle System
	Blood Particles
	Blood Spatter Generator
	Traces
	Sparks

	Game State Implementation
	Class Organization
	Menu Navigation

	Audio System
	AudioManager
	Bear Sounds Emitter

	Conclusion
	EGGS Engine as a Development Platform
	Specialized Engine
	Software Development Kit (The BACON editor)
	Performance
	Content Support
	Final Thoughts

	Conclusion
	Future Work
	Further Optimization
	Collision Detection Quirks
	Product Polish

	I Appendix
	Sketches
	Article: Write Games, Not Engines
	Code Examples
	Node Reflector Class
	The LevelGenerator.CreateTile function
	The BloodGenerator class
	XmlTilesetImporter Import Function

