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Summary

Behavior Trees are a concept used in game AI, but which until very recently was
disregarded in academia - presumably not out of spite, but rather because there
simply was no ground work done on the topic, such as a formalization which would
allow for calculations to be performed on the structure.

To assist with this, we set out to explore what measures might be useful in
measuring the appropriateness of a behavior tree. To arrive at this, we need to
perform a formalization, create a software toolchain to support the calculations in
a real-world example, construct a test bed game based on an actual concept in
which those measurements can be investigated, and finally the evaluation of the
various methods described throughout the report.

Thus we start the report by describing behavior trees as a tree
structure containing logic, and describe both the look and the
meaning of each of the six possible building blocks which make up
a behavior tree: Behaviors, Links, Sequences, Selectors, Parallels
and Decorators.

With the description complete, a more strict formalization can
be conducted, in which is described not only the language struc-
ture and the syntax, but also the execution of the tree. Before describing the
measurements, methods for optimizing behavior trees are described. These allow
game designers to construct their trees however they want, and then simply trust
that the tree executes rapidly and correctly.

Once this has been completed, the measurements are constructed which allow
for the evaluation of the appropriateness of any behavior tree, when viewed at a
higher level. Based on work done by Yannakakis and Hallam[28], measurements
are defined which describe the appropriateness through the challenge a tree poses
to a player and the diversity of the behavior it represents. Two methods are devised,
based on local and global paths.

To allow for this work to be conducted, the SMARTS framework
developed through the course of the project Where Game AI Meets
Academic AI[16] is revisited, and revisions performed on it:

The method of execution is changed from a recursive function
calling in which each node executes its own children and replaced
by a system in which a scheduler ensures the timely execution of
behaviors. This system allows for behavior trees to be run without
needing a threading system for parallels, which turned out to be a large problem
previously when running tests at high speed.

Further, the SMARTS system is expanded to include a general perception sys-
tem, which uses the character concept from the SMARTS behavior tree system to
view the world in an adjusted manner. This system closes the missing gap in the
SMARTS system, which with this addition becomes a complete game AI system, as
defined by Daniel Sanchez-Crespo Dalmau[13].
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Finally, the work to create an implementation into a specific
game engine, where the Qt-based Gluon game creation and dis-
tribution framework is chosen as an extreme example (due to its
nature of forcing scripting based implementations) is continued
and completed. In the previous project this work was proved to be
possible, and in this project that work is completed to the extent
that the integration becomes usable for the creation of actual games.

To be able to perform tests on a real world example, the game The
Quantum Sea is constructed, based on a premise of colliding par-
ticles in the sub-atomic world and gathering points on the basis
of these collisions. This game, though simple in concept, turns
out to be very difficult to master and thus fits the basic concept of
what a casual game should be.

As such, it is a good candidate for performing an evaluation of
a behavior tree which controls the game in place of the player. This hands-off
approach to creating a behavior tree allows for the minimizing of variables during
construction, which while in a scenario in a true real world scenario would be less
advantageous, is good for us due to the nature of this report: We wish to evaluate
the methods themselves, rather than truly create a player for The Quantum Sea.

The evaluation chapter contains descriptions of three evaluations:
Evaluating the measurements, evaluating the tree construction
method from the previous report[16] and finally the perception
system.

During the evaluation of the measurements, both the global and
local method is discovered to be applicable in varying situations.
This encourages the suggestion that both methods could be used
in conjunction, and suggestions for each method to be used in the situations where
they make sense. The design method is found to be both thorough and intuitive,
and the perception system is found to be, while cumbersome in its current incar-
nation, technically usable.
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CHAPTER

1

Introduction

Through the years, game AI has been neglected by academia, not out of mal-
ice, but because it has a different goal than the AI techniques usually applied in
academia: When academics speak of artificial intelligence, or machine intelligence,
the thoughts are that AI should be designed to search for the optimal solution to
a problem. When Kasparov played against Deeper Blue in 1997 and lost1, this is
the kind of AI he worked against.

However, one problem with such AI is that they are designed specifically to win.
This soon becomes a problem when you look at what the word ”game” means.
Roger Caillois describes this as an activity which must be fun, separate, uncertain,
non-productive, governed by rules and fictitious. While this seems self-evident, in
particular the first item here often sits at odds with the goals of classic machine
intelligence; a game which you play, but in which your artificial opponent always
wins, simply is not fun.

So, game AI in stead centers around the goal of making a game as enjoyable as
possible. Towards this goal, classic AI will sometimes do fine, but most often it is
more the case that it works against the will of the game designer. Game AI thus
aims to make it possible for game designers to construct game characters which
are believable, and act in accordance with the game world’s premise.

Behavior Trees as defined by Alex J. Champandard[9] aim at dealing with some
of the problems found in techniques used in the industry to solve the game de-
signer’s problems, such as hierachical finite state machines, scripting or planners.
In the report Where Game AI Meets Academic AI[16] the first steps towards pulling
Behavior Trees into the realm of academia were made, and this report is a contin-
uation of that effort.

1.1. Purpose of This Project

Based on the work done in Where Game AI Meets Academic AI[16], we will start
by formalizing behavior trees, and constructing a method for evaluating their ap-
propriateness. Also based on the tests of metrics used for defining challenge and
behavioral diversity in Where Game AI Meets Academic AI[16], we will define two
new measures for these two metrics. We will also present a way of calculating
which weights and probabilities in a behavior tree will give the most interestering
game experience.

Refactoring of the SMARTS Library presented in the report mentioned above is
necessary to accommodate some of the design and implementations issues in the
first version, including both basic design issues as well as features lacking in the

1http://www.research.ibm.com/deepblue/
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Chapter 1. Introduction

system itself, which will allow the testing of methods on behavior trees in a more
straight forward manner than was possible previously.

We thus expand the library with new functionality in the form of a perception
system, to enable the creation of a wider variation of game AI which perceive the
world in a more sensible way than simply reading the information directly out of
the game world.

Furthermore, we take the preliminary integration of the SMARTS Library into
Gluon through its plugin system created in the same report, and expand this into
a fully functioning implementation in the spirit of Gluon.

For testing the implementation together with the challenge and behavioral diversity
measures, we will create a game using Gluon, and run our tests through that game.
We then evaluate the tests and results to determine if the measures are adequate
for creating an interesting game. We further use the test bed application from
Where Game AI Meets Academic AI[16] to compare the new measurements with
those employed in the previous report.

In summary, this project will consist of work based on the following items:

• Formulate a method for evaluating the appropriateness of behavior trees

– Formalize behavior trees

– Define measures for challenge and behavior diversity

• Revisit the SMARTS Library

– Analyze the SMARTS Library.

– Redesign with the power of hind-sight

• Integrate the SMARTS Library into Gluon through plugins

• Create a game using Gluon based on the design presented in January

• Evaluate the measures for challenge and behavior diversity

2 Perceived Challenge



Part I

Formalizing Behavior Trees

Behavior Trees have their origin in the game industry, and
in this part we perform a formalization and define measure-
ments for behavior diversity, challenge level and interest.
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CHAPTER

2

Introduction to Behavior Trees

In this section we will describe behavior by explaining each part of them in some
detail. This is done to demonstrate how the different components work together,
and what kind of behaviors can be built with behavior trees.

We describe the individual components that make up a behavior tree and then
put these into context of a small example, which is only described superficially. For
a further exploration of this particular behavior, please see Section 9.2 on page 80.
It should be noted that this example is only one way to create this behavior, and
that there are other ways to accomplish the same thing.

Figure 2.1 shows this real-world example from the game The Quantum Sea of
what a behavior tree looks like, and the following section shows the symbolic rele-
vance of the various parts of the tree.

2.1. Building Blocks

The following sections are adapted from Where Academic AI Meets Game AI[16].
There are six different types of components available when creating behavior trees.
This section will cover the use and functionality of these components, as well as
show the symbols used in diagrams when designing behavior trees.

Figure 2.1.: A sample behavior tree from the game The Quantum Sea
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2.1.1. Behaviors

Behaviors in a behavior tree can contain actions which the game
AI has to perform or be subtree of the behavior tree. These
actions are provided by the game programmer as black boxes,
which allows the AI designer to use them when constructing
behavior trees.

Furthermore each behavior will end execution with a termination status which
could be successfully completed execution, execution failed cleanly or some unex-
pected error occurred.

As seen in the image, a behavior is symbolized by a circle, with the name of
the behavior underneath. Optionally, in the case of single-letter names, the name
can be written in the center of the circle in stead of underneath. In this case, a
comment can be written underneath which does not influence the semantics of the
tree (in other words: meta information).

2.1.2. Links

A link node is a specialized type of behavior which references
another behavior tree. This is what allows for the abstraction
and consequent re-use of behaviors. A function in programming
languages can be called from many places, returning the control
flow to where they were called. A link node functions in the same
way, in that many link nodes can call the same behavior tree,
which then only knows its children, and not the caller. This allows for the modular
building of behavior trees.

Links are symbolized by a diamond with the letter L inside. The name of the
behavior tree which is pointed to is written underneath.

2.1.3. Sequences

As the name indicates, a sequence is a sequence of behaviors
executing in a specified order, and is thus a composite. The
sequence implicitly defines dependencies between the behaviors
executed, from the execution order. A behavior executes, and
maybe changes the value of a number of variables, which are
later used by another behavior.

A sequence will react differently depending on the termination statuses received
from its children. So if a child fails it will bail out and when a child succeeds it will
continue to execute the next child behavior until the sequence is done. When the
last child has succeeded, the sequence will return with a success.

The sequence composite is symbolised by a square box with the name of the node
written inside, and an arrow underneath it. This arrow should stretch over the
lines pointing to all the children of the sequence, as seen on the Switch sequence
in Figure 2.1 on the preceding page.
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2.1.4. Selectors

While sequences only execute behaviors in a given order, the
selector composite is used for selecting a given behavior for ex-
ecution. It is possible to use any kind of AI algorithm to take
care of the decision making of the selector. Thereby the selec-
tion of a behavior could be done using e.g. probability, priority or complete non-
determinism. As a sequence, the selector has to handle the termination statuses
from its children, and though the reactions resembles those of a sequence there
are some vital differences.

When a child fails the selector will try to select another child as long as there
are new ones. The first child to succeed will cause the selector to return with a
success. This is the logical opposite of a sequence.

As an example of a variant of the selector we take a probability selector. This type
uses probabilities on the children for choosing the next child for execution. Besides
the probabilities this type of selector behaves as an ordinary selector which only
run each child once and fails if all children has failed.

A sequence is symbolized by a pill shape (that is, a rectangle where the rounding
is complete at both ends), with the name of the node written inside it.

2.1.5. Parallels

With the components described so far it is possible to create a
behavior tree. However, the execution of the tree will be very
linear, and not supporting any form of concurrency. This is
where the composite Parallel come into the picture.

Parallels are capable of running all of their children simultaneously, and are
responsibly for all of their child behaviors, insuring they terminate cleanly when
the parallel itself terminates. There are different ways of deciding when the parallel
has to terminate, depending on the context in which it is used; e.g. is it possible
to specify which and how many behaviors should succeed to count as a success or
how many are allowed to fail before it becomes a failure.

A parallel is symbolized by a pill shape whose border is dotted rather than solid
as seen in the selector.

2.1.6. Decorators

Behaviors, links, selectors, sequences and parallels are the cor-
ner stones when creating a behavior tree. At some point, how-
ever, the need will arise for adding features or extending a be-
havior or a subtree, without changing the behavior tree drasti-
cally or modifying the implementation of a behavior. It is here decorators come into
the picture.

Decorators can be inserted almost everywhere in a behavior tree but with one
restriction: they cannot be leaf nodes. A decorator can extend any behavior with
extra functionality without the behavior having any knowledge about the decorator.
Furthermore a decorator cannot branch, as it only has one child behavior.
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Figure 2.2.: Another sample behavior tree from the game The Quantum Sea

A decorator is symbolized by a flattened diamond with a single letter inside,
indicating which decorator is being used. They are put on the connecting line
going to a behavior, as seen in Figure 2.2. It is further suggested, but not required,
that the full name of the decorator be listed on the diagram somewhere, also in the
style shown on the figure.

2.2. A Small Example

Figures 2.1 and 2.2 show most of the various possibilities of behavior trees, and
Figure 9.7 on page 86 shows the only item not used in those two (that is, a parallel
composite node). In this section we sketch out what would happen in the first of
these, named Cautious, to give an idea of how behavior trees function:

The selector Cautious will first attempt to run the Switch sequence, which in
turn will run each of its children in order. If either of the behaviors Apply Spin,
Apply Speed or Switch Particle fails, Cautious will attempt to execute the next
behavior, the link to the Exploring behavior tree. However, if all three succeed,
the sequence will return true, and the selector will have succeeded and not try to
execute the linked behavior.

2.3. Conclusion

In this chapter we went through a recap of what behavior trees are and which
kinds of building blocks can be used to create a behavior tree, as well as a short
description of how one should interpret the syntax and control flow of a behavior
tree.
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CHAPTER

3

Behavior Trees Formalized

Behavior trees are practical structures used to design behaviors in games.[7][8]
Behavior Systems that resemble behavior trees have been used in many different
areas such as modeling behavior of intelligent agents.[5] In fact there are sev-
eral behavior systems that are not quite behavior trees but are very similar in
structure.[2]

In order to evaluate what a good behavior tree is and potentially how to optimize
them, we need a formal way of describing Behavior Trees.
Behavior Trees can be seen as a form of programming language designed specifi-
cally for behaviors. Lets look at the three main parts of a programming language
and how they work in a behavior tree:

Any programming language need to support three different elements: elementary
building blocks, means of combination and means of abstraction.[1]

The elementary building blocks of behavior trees is the action and the condition,
an action does something (and possibly checks something) while a condition solely
checks some condition.

The second element is means of combination and the basic behavior tree have
two (extended versions with parallels can be made) called sequences and selec-
tors, these allow combination of behavior trees which include everything, note that
these means of combinations are closed in the sense that all elements that can be
combined are behavior trees and all combinations are also behavior trees. This
property is what allow us to build complex behavior trees.

Then there are means of abstraction, this is something not always described
in behavior tree literature[9], but we support it through behavior tree references.
This allow the designer to used whole behavior trees as simple actions without
much thought on how the are implemented. Abstraction is also an integral part of
behavior trees as a whole as actions are really abstractions over arbitrary code.

As with any programming language we can specify the syntax (the look) and the
semantics (the meaning) of behavior trees.

3.1. Formal Definition of Behavior Tree

We use a recursive definition to describe the structure of a behavior tree. We use
the definition of the individual nodes as defined in the previous chapter. A behavior
tree is a rooted tree (connected acyclic graph).

A behavior tree is a tree of behavior nodes, these nodes can have types such as
action, condition or composite.
A Behavior Tree can be any of the following:

1. A simple action (action or condition), which is a piece of arbitrary code.
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Figure 3.1.: Structure of a Behavior Tree

2. or A composite (either selector or sequence) with one or more behavior trees
as children.

3. or A decorator with exactly one behavior tree as a child.

This defines a tree with composites as internal nodes and simple actions as leaf
nodes. More generally, a behavior tree represents a decomposition of behavior in
individual subtasks with each their own goal. And any behavior tree can be used
as a sub behavior of a larger behavior tree. [12][9]

The original inspiration for behavior trees is Hierarchical Finite State Machines
[15]. But behavior trees introduces the limitation that the hierachy have to be a
tree. The states in a behavior tree is no longer real states as they cannot change
to arbitrary other states[9].

3.1.1. Behavior Tree Syntax

The syntax for behavior trees is graphical and not textual as traditional program-
ming languages. It is build around a tree structure. Even though behavior trees
are graphical structures it is not necessary to create behavior trees graphically (we
have used tree views) as they could just as well be designed in a traditional written
language such as in ABL[21][22] which otherwise is similar to behavior trees. The
graphical nature is for the benefit of the behavior designers such that they do not
have to be programmers to create behaviors.
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3.1.2. Behavior Tree Execution

We use simple pseudo code to define the semantics of the execution of a behavior
tree. This is a very simplified view on what a behavior tree does, with details cut
for brevity.

1 Simple Action A => status = exec code(A); return status

1 Sequence S =>
2 for A in actions(S):
3 if A is simple action:
4 status = exec code(A)
5 else:
6 status = exec behavior(A)
7 if status is failure:
8 return failure
9 return success

1 Selector S, nextaction(S) =>
2 for A in nextaction(S):
3 if A is simple action:
4 status = exec code(A)
5 else:
6 status = exec behavior(A)
7 if status is success:
8 return success
9 return failure

1 Decorator D =>
2 status = exec code(D)
3 if status is failure:
4 return failure
5
6 if action(D) as A is simple action:
7 exec code(A)
8 else:
9 exec behavior(A)

10
11 status = exec code(D)
12 return status

The procedure nextaction(S) ⇒ A gives the next action to execute until all have
been executed. Typically prioritized or probabilistic order.

This semantics corresponds to the implementation we had in our old testbed[16].
This is a relevant definition as it represent what behavior we want from the behav-
ior tree, but not necessary the best way to implement it in practice, chapter 5 on
page 37 handles this subject.

Execution with Scheduler

When using a scheduler the operational semantics change, as the execution behav-
iors and child behaviors is not done in each behavior but rather in the scheduler.
This basically means that a behavior returns an index on a child behavior to the
scheduler, which in turn in the next call executes this child. When a child finishes
execution the status is then returned to its parent, such that it can process the
information and continue its execution if necessary.
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3.2. Conclusion

Through this chapter has been conducted a formalization of behavior trees: Firstly
as a structure in which a behavior tree is described as a tree of composites, dec-
orators and simple actions, secondly as a graphical language, then finally the se-
mantics for the execution of behavior trees are described.
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CHAPTER

4

Evaluating Interesting Behavior Trees

What is a good behavior tree? This is the question we want to come with an answer
to. Lets start with a definition of what we want a good behavior tree to be:
Definition 1: Good Behavior Tree
A good behavior tree is one that when executed produces a behavior which the
player finds interesting to play against.

Note that we limit our definition to behaviors of opponents to players, not allied
or neutral entities. This is a fair limitation as most behaviors used in games are for
opponents, and that measuring qualities such team-cooperation are outside the
scope of this work.

The reason for this definition is that it is important to be able to define what is
interesting for the human player. It is also a way of measuring the entertainment
value of an AI opponent[28].

From this definition we need to find out what classifies an interest behavior and
how we can relate an interesting behavior with the behavior tree that produced it.
That is, how do we measure interesting behavior directly on the behavior tree.

Metrics have been developed for measuring interesting behavior by defined on
traces of behavior in a running game[28]. We believe that we can do the same
directly on the behavior tree structure. If the behavior is interesting the behavior
tree is good.

4.1. Measuring Behavior Trees

We want to define how interesting the performance of an agent is by combining the
behavioral diversity and the challenge level.

A function is needed which gives us the maximum interest based on challenge
and diversity. This function takes a behavior tree, success rates of actions and
weights for actions; and returns an interest value.

We want to find the weights that maximizes this function. (The best compromise
between challenge and diversity).

4.1.1. Behavior Diversity

Let us define behavior diversity before talking about measuring and calculation of
behavior diversity.
Definition 2: Behavior Diversity
Behavior diversity defines how often child nodes are selected compared to the
number times a selector makes a selection, the more evenly the distribution the
higher the behavior diversity.
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Consider the two extreme cases: The case where the diversity is the highest
possible and the case where it is lowest. The most diverse behavior is when it tries
all possible sub-behaviors with the same probability, i.e. they all have the same
weight. The least diverse behavior is when it always perform the same action. This
assumes that the behaviors are either simple actions as defined in Section 3.1 on
page 9 or all have the same internal diversity.
Definition 3: Canonical Behavior Tree
A Canonical Behavior Tree is a behavior tree only consisting of a single selector
with only simple actions as children.

It is easy to define the behavioral diversity in terms of a behavior tree. If we
consider the case of a single selector with primitive actions (no other composites)
the most diverse behavior is when the weight of all actions are the same. The least
diverse behavior is when one action is 1.0 and the rest is 0.0 allowing only one
action to be performed.
We want a function that satisfies this such that it produces the highest value
possible when weights are even and the lowest possible value when the one action
is always selected.
Definition 4: Configuration
A configuration is a specific list of values for the weights of the behaviors of a
selector.

We also want it to satisfy that if we take some configuration and make the weights
more even the diversity should go up.
Because the most diverse configuration is the one with even weights, a simple
approach to measuring diversity of a configuration is to calculate the distance
between the configuration and the optimal one. It is then easy to define using
euclidean distance:

BD =

√√√√ n∑
i=0

(
1
n
− wi)2 (4.1)

This satisfies our conditions (if we minimize or negate) as the distance is from the
optimal one produces a value of 0.0 and the least produces the highest possible
distance.

Another approach is to measure the variability of a set of variables, which is
calculated as the sum of the squares of the difference from the estimated mean
value:[29]

Sum of Squares =
n∑
i=0

(Xi − X̄)2 (4.2)

Our mean can easily be calculated as 1/N where N is the number of weights. Using
this mean a measure for behavioral diversity can be written as:

BD =
n∑
i=0

(
1
n
− wi)2 (4.3)

This turns out to just be another simpler way to look at the same geometric prob-
lem.
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Another better way to define behavioral diversity is to define it as the amount of
uncertainty about a particular configuration. We can also see it as the amount of
disorder in the configuration. This measure is called entropy[23] and have been
used for measuring diversity before[28].

We can map entropy to diversity such that the least diverse configuration have
entropy 0 and rises as the diversity goes up. The entropy of a configuration is
defined as:

Shannon Entropy = H(wi, . . . , wn) = −k
∑
i=0

wiln(wi) (4.4)

This entropy value is dependent on the number of weights in the configuration,
but it is possible to normalize to a value between 0.0 and 1.0 such that the config-
uration with highest diversity gets 1.0 and the lowest get 0.0. We could do this by
scaling it with the maximum entropy for a given number of weights which turns
out to be just lnn where n is the number of behaviors. The other measures can be
similarly scaled by dividing with the maximum distance.

We choose Shannon Entropy as the measure for diversity because it produces
nicer results when used together with our challenge measure as we shall see later.
What makes entropy such a good measure, is that it has a number of properties
that are appropriate for diversity as described by Balch [4, 212–213]. In particular
properties 4 to 6 describes exactly the properties we want for measuring diversity
in behavior trees as described earlier. Other metrics such as Euclidean Distance
does not cover the properties 1 to 3 (it is not continous and does not define re-
cursion) which are important when we want to measure diversity of hierarchies,
which is a typical usage in trees.

This leads us to the following definition of behavioral diversity based on Shan-
non Entropy, dropping the negation and the constant as the function have the
qualities we want without them.

Behavioral Diversity = BD(wi, . . . , wn) =
∑
i=0

wiln(wi) (4.5)

It is also simple to expand diversity to hierarchies of selectors by noticing that
having the same weights per path to the leaf level gives the highest behavioral
diversity. If one path has weight 1.0 and the rest have 0.0 this will have the least
diverse behavior, as expected.

Using entropy also provides a way to deal with hierarchical diversity. This is
done by utilizing Hierarchical Social Entropy[4], where the diversity of sub-groups
are calculated individually and combined using a weight for the contribution for
each group plus the diversity of the values of the contributions themselves.

BD(N1, . . . , Nn) =
n∑
i=1

BD(children(Ni)) +H(weight(N1), . . . , weight(Nn)) (4.6)

This is convenient because we will not have to calculate the paths directly, as we
can calculate the diversity of parts of the tree separately.
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Figure 4.1.: A diverse behavior tree

Figure 4.2.: A less diverse behavior tree

This does not handle the case where one or more weights wi are zero as ln(0) =
−∞, so we have to make sure all weights are positive. We can ensure this by
adding a small constant to the weights before calculating the entropy or by ignoring
behaviors with weight 0 completely.

Example 4.1.1.1 Measure of Behavioral Diversity
To show how entropy can be used for calculating the behavior diversity, two exam-
ples are used and the diversity compared.

Diversity = −
∑
i=0

wi lnwi

= −(0.25 · ln 0.25 + 0.25 · ln 0.25 +
0.25 · ln 0.25 + 0.25 · ln 0.25)

= 1.38

Figure 4.1 shows a selector with even weights on the child nodes. Then we use
the entropy to calculate the diversity of the behavior tree. From these calculations
we can see that the diversity of that particular tree is 1.38.

Diversity = −
∑
i=0

wi lnwi

= −(0.7 · ln 0.7 + 0.1 · ln 0.1 +
0.1 · ln 0.1 + 0.1 · ln 0.1)

= 0.9
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Figure 4.3.: Three possible paths through a hierarchy of selectors

Figure 4.2 on the facing page shows another selector with a different set of
weights than Figure 4.1 on the preceding page, and again we apply the entropy
calculations on this tree. The diversity is calculated to 0.9.

As we would expect the diversity of the Figure 4.1 on the facing page is greater
than that of Figure 4.2 on the preceding page, which also can be seen on the
distributed weights for the selectors.

We need to optimize the entropy of the weights of the paths of the behavior tree to
get the most diverse behavior.

Two trees with the same diversity per path can have slightly different behavior.
This is because a selector creates a relation or partial ordering between its children
(actions).

Example 4.1.1.2 Execution Order
If we consider a selector with another selector and a simple action C as children
and the child-selector has two simple actions A and B as children. Then if the
child-selector is selected for execution first and S is executed first. If S now fails,
the next action to be selected is B. This creates a partial ordering, because if the
simple actions had been part of just one single selector, then C would be considered
after A had failed. See Figure 4.3 for a visual description of this.

This indicates that using entropy on paths might not be enough to measure
behavioral diversity as partial orderings create less diverse behavior. We want to
find out if this can be ignored when optimizing behavior trees. Calculating diversity
as Hierarchical Social Entropy does not differentiate these cases.

4.1.2. Diversity of Sequences

The behavioral diversity of a selector can be calculated as the entropy in a system,
for simplicity we minimize the entropy value for maximum diversity allowing us to
drop the negation of entropy.

Diversity = A · ln (A) +B · ln (B) + C · ln (C) +D · ln (D) (4.7)
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Figure 4.4.: A Sequence of Selectors converted to a single Selector

But this does not let us calculate the diversity of a sequence directly. The intu-
ition behind entropy of a sequence is that a sequence in itself does not contribute
to the diversity of a behavior tree. A sequence of simple actions is exactly as diverse
as a simple action alone, from an entropy point of view. In other words: A selector
does not produce uncertainty about its behavior on its own, as it always runs the
same sub-behaviors in the same order.

But if the sequence have selectors as children, then they will contribute to diver-
sity, and the sequence aggregates the diversity in some way. If we assume that the
event that an action in a sequence fail is rare, then the diversity is simply a selec-
tion between possible combinations actions from the first selector and the second,
as illustrated in Figure 4.4. The diversity of this can be written as:

Diversity = AC · ln (AC) +AD · ln (AD) +BC · ln (BC) +BD · ln (BD) (4.8)

Rewriting the logarithms allow us to rewrite as such:

Diversity = AC · (lnA+ lnC)
+ AD · (lnA+ lnD)
+ BC · (lnB + lnC)
+ BD · (lnB + lnD)

Then factoring out the logarithms yields an expression similar to the diversity for
a selector.

Diversity = lnA · (AC +AD)
+ lnB · (BC +BD)
+ lnC · (AC +BC)
+ lnD · (AD +BD)

And because we know that A + B = 1, C + D = 1 we can see that the the diversity
calculation for a sequence reduces to the diversity for a selector. This mean that
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we do not need to calculate all the different possibilities for behaviors, which is
much more efficient.
This is a reasonable way of measuring the diversity of sequences as it can be seen
as hierarchical entropy of a selector where the weights of all children are 1.0. This
will simplify to simply summing over the entropy of the children, as the entropy of
the sequence itself is 0.0 (

∑N
i=0 1 · ln 1).

Also, if a simple action is added to a sequence the diversity value of the sequence
does not change as there is no uncertainty about the execution and thus the en-
tropy (ln 1 · 1) is zero.

4.1.3. Challenge Level

Challenge is how difficult the agent is to play against. We have defined that an
agent using a (from the point of the agent) very successful action would give this
action a high challenge level. An agent using a strategy with very low success rate
is of lower challenge level, and this leads to the following definition:

Definition 5: Challenge Level
The higher the overall success rate of the agent, the higher the challenge level.
That is the higher the probability that an agent selects a high success rate strat-
egy, the higher the challenge level.

For our purposes challenge is a pure measure of how challenging an agent is.
Other literature goes further and defines what a appropriate challenge is (not too
hard, not too easy). But for now we want to know how hard a game is.[3][25][28]

The highest challenge level is when the agent always uses the optimal policy or
strategy (let us not consider that it would be more challenging if a larger number of
equally challenging strategies are used; optimal means that it will win in the vast
majority of cases).

It terms of a behavior tree, take a tree with two actions with high success rates
and one action with low success rate. Selecting the more successful actions more
often will lead to more challenging behavior (this assumes the actions achieve the
same goal). By adjusting the weights on these actions we can control how often
they are run, thus how challenging the behavior is. We only consider selectors
when defining and calculating challenge for now.
Challenge level is a contrast to behavioral diversity. The most diverse is when the
weights are even, but the most challenging is when the most challenging behaviors
have the highest weight. We believe that by finding the best compromise between
challenge and diversity, we can create interesting behaviors. Challenge can be
seen as the difficulty level of the agent. We can scale this difficulty by changing
the ratio of challenge to diversity in calculating how interesting a behavior is.

We possess the knowledge of how successful an action has been, and on top of
that the strategy which is the weights on each of the actions. To optimize the
strategy to maximum challenge is thus simply to select the one with the highest
success rate. But we want to support several actions with varying success rates,
such that a strategy is selected according to success rates.
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Measuring Challenge

To measure challenge we need a formulation that capture that a configuration
that weights behaviors with high success rates should have a high challenge value.
Intuitively it can be seen as a distance problem, where the challenge is the distance
to the optimal configuration. For our measure of challenge we need a function that
satisfies certain properties. First it should produce the highest value when the
weights are the same as the success rates, giving the most successful behaviors
the highest weight. Second it should produce the lowest value when the behavior
with the lowest success rate is given a weight of 1.0. And third, any change in
a configuration toward the success rates of the behaviors should yield a higher
challenge.

This should intuitively be captured by the euclidean distance from the optimal
to the particular configuration in question:

Challenge =

√√√√ n∑
i=0

(wi − pi)2 (4.9)

But this have some problems such that when trying to optimize for a combina-
tion of challenge and diversity, the combined expression does not yield an exact
analytical solution.

The idea of using a distance metric is not bad, we just need to use another
distance metric that does not have these problems.
The measure we chose to use is KL-divergence[24][18] and is defined as such:

KL-divergence =
n∑
i=0

wi ln
wi
pi

(4.10)

KL-divergence is also called relative entropy and is the difference between two
probability distributions. It is not a true metric in that the distances d(p1, p2) and
d(p2, p1) are not necessarily the same. Also to have the highest value represent the
highest challenge, we have to negate KL-divergence.

Example 4.1.3.1 Measure of challenge
To show how KL-divergence can be used to measure the challenge level of a behav-
ior tree we calculate the challenge level of two very different behavior trees.

Figure 4.5 on the facing page show a selector with even weights. This will pro-
duce the highest possible diversity for this example, but it is not the most chal-
lenging configuration possible. To calculate the challenge we not only consider the
weights but also the success rate of each action. In this case each action is run
with the same probability despite the fact that one action has a high success rate
of 0.8 and the other actions have low success rates such as 0.05.
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Figure 4.5.: A diverse but not very challenging behavior tree.

Figure 4.6.: A more challenging behavior tree

Challenge = −
n∑
i=0

wi ln(
wi
pi

)

= 0.25 · ln 0.25
0.8

+ 0.25 · ln 0.25
0.1

+

0.25 · ln 0.25
0.0.5

+ 0.25 · ln 0.25
0.05

= 0.743

As expected, calculating the diversity produces a high value of 0.743 which means
low challenge as the value should be as close to zero as possible indicating the most
challenging case.

Figure 4.6 shows the same behavior tree but with different weights assigned.
In this case the most successful action is assigned a higher weight than the other
actions. This should by the definition of challenge give a more challenging behavior
and thus a challenge value closer to zero.
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Challenge = −
n∑
i=0

wi ln
wi
pi

= 0.7 · ln 0.7
0.8

+ 0.1 · ln 0.1
0.1

+

0.1 · ln 0.1
0.05

+ 0.1 · ln 0.1
0.05

= 0.045

As seen in the calculation above, the found challenge value is indeed much closer
to zero, as was to be expected.

This demonstrates by example that this measure is a reasonable measure of
challenge of a behavior tree.

4.1.4. Target Specific Challenge Level

Instead of trying to optimize the challenge level, it is possible using the definition of
challenge as used by Yannakakis[28] to target a specific success rate of the agent.

Example 4.1.4.1 Specific Challenge Level
As an example we can set the challenge level to be approximately 50 (in an 0 to 100
range instead of 0 to 1). A high value gives harder agents and lower values gives
easier agents as by the definition of challenge.

Say we have the values (100, 100, 25) as success rates for strategies under a selec-
tor. We want to create weights w1, w2, w3 such that 100w1 + 100w2 + 25w3 = 50. That
is to say that we want the success rate over time to be approximate 50.

The weights should sum up to 1 that is w1 + w2 + w3 = 1, we also want to make
sure that if two values are the same they should have the same weight.

We can solve this exactly by seeing the problem as a geometric problem where
we create a vector of the ratios of the values:

100/225, 100/225, 25/225 = (0.44, 0.44, 0.11) (4.11)

and a vector of the opposite which is

(100− 100), (100− 100), (100− 25) = (0, 0, 75), (0/75, 0/75, 75/75) = (0.0, 0.0, 1.0). (4.12)

The vector we want is one the line from v1 = (0.44, 0.44, 0.11) to v2 = (0.0, 0.0, 1.0)
we can create a new vector from the first to the second v1v2 = (−0.44,−0.44, 0.89).
We can now describe the vector of weights we need as v1 + v1v2s (where s is a scale
from 0 to 1). This allows us to create the equation (0.44−0.44s)100+(0.44−0.44s)100+
(0.11 + 0.89s)25 = 50, the solution to which gives us the scaling factor s. Using this
value in v1 + v1v2s gives the weights.

This approach, however, has several problems: First of all it only allows one to
target a challenge level and not a diversity level. It also does not ensure that non-
negative weights are produced. What we want is a general way to optimize both
challenge and diversity.
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4.1.5. Challenge Level of Sequences

We want to expand the concept of challenge and diversity beyond selectors to se-
quences of behaviors.

When viewed from above, a sequence is considered a simple atomic action. This
action also have a success/fail rate which can be both measured by simulation
or calculated by multiplying the individual sub actions, i.e. the chance of the first
child succeeding times the chance the second child succeeds gives the chance they
both succeed in sequence. This success rate can be used as with simple actions. A
sequence does not in itself contribute to behavioral diversity, but it does contribute
challenge.
The challenge of a selector can be calculated as a selector with all the weight be-
ing one. For diversity, the sequence does not contribute anything here because
1 · ln 1 = 0. For challenge this gives a level dependent of the success rates. Similarly
to how we calculated diversity, we could convert to a selector and calculate the
challenge. But we do not have to as we can calculate directly.

It is possible to use a measure of challenge which is defined as the most appro-
priate level of challenge and not the highest one possible.[28] In terms of behavior
trees we have the hypothesis that the most appropriate level of challenge is around
where the agent use the good strategies the most and the bad strategies the least,
but balanced such that it does not always choose the best strategy.
Behavior where the player wins more have a lower challenge and behaviors where
the player loses more have higher challenge. If we map this to success rates of
actions, we want weights such that the combined behavior considering both chal-
lenge and diversity is close to winning half the time and losing the other half. And
we want to be able to easily adjust this.

4.2. Optimization of Behavior Tree Structure

There are several things that can be done to a behavior tree in order to optimize
it. One thing we can do is simplify the trees into equivalent trees with fewer and
simpler composites. We can do this for selectors, sequences and parallels.

4.2.1. Sequence

This is the simplest case. If we have a sequence with a sequence as a child we
can combine these sequences into on by simply moving the sub-behaviors into the
parent sequence (as seen in figure 4.7). This creates one larger sequence that will
have the exact same behavior. This makes the execution faster and consumes less
memory as less structure has to be stored.

4.2.2. Probabilistic Selector

This is the case where a selector has one or more sub-selectors. If we consider
the case using probabilistic selectors we have that the marginal probabilities of
selecting a bahavior should be the same in the original and the transformed tree.
If we consider a tree with a selector with two children with weights 0.5 and 0.5 and
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Figure 4.7.: Consolidate Sequences

Figure 4.8.: Consolidate Probalistic Selectors

one of the children is another selector with two children with weights 0.5 and 0.5.
This tree would be approximately equivalent to a tree with two children with 0.25
weights and one child with 0.5 weight (the weights are simply multiplied).
But it is not exactly the same because having two selectors creates a binding be-
tween the actions in each selector. This mean that we cannot simply do this con-
version and expect the same behavior, but we can argue that we can use the con-
version for evaluation of diversity and challenge because as challenge and diversity
goes up for one representation it goes up for the other and the opposite.

4.2.3. Random Selector

Now we can simplify probabilistic selectors, but what about random selectors.
These can be converted simply by viewing them as probabilistic selectors and giving
each child the same weight.
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Figure 4.9.: Convert Random Selector to Probabilistic Selector

Figure 4.10.: Consolidate Prioritized Selectors

4.2.4. Prioritized Selector

Prioritized selectors can be simplified with the same process as sequences can
as they are simply sequences with the change that they return the moment one
behavior returns success.

4.2.5. Parallel

As long all parallels involved use certain termination criteria, it is possible to com-
bine parallels in the same way as with sequences. Note, however, that in the cases
where at least one uses a termination criteria where the parallel first terminates if
all children have failed and first succeeds if all children have succeeded, it is not
what this mean if the two parallels were combined.

4.2.6. Conclusion

The reason why these kinds of simplifications should be performed by the com-
puter and not simply writing them in this way from the start is because it is easier
for the designers to design behaviors out of logical pieces which can be combined.
The fact that these can be combined and simplified should not matter to the de-
signers.
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A typical use case is the use of references where one behavior tree could be a
sequence of sub-behaviors is used as a reference in another sequence. Here it is
not directly evident that it can be simplified because the sequence is hidden in
the reference. And more importantly: the designer should not have to know what
is actually inside the reference, as this abstraction is an important part of the
behavior tree concept, as mentioned in Chapter 2 on page 5.

4.3. Optimization of Interest Value

One major issue with usability in behavior trees is hand tweaking of floating point
priorities. This is difficult to do when there are many children. And it makes it
hard for a game designer to achieve the exact behavior they want[11].

A paper on complexity in Halo 2[12] refers to this problem as parameter creep,
where the number of values needed is to large to manage. They suggest a solution
to this problem by allowing inheritance of behaviors such that the complexity can
be shared and reused. An approach such as that suggested by Object-Orientation
for Hierarchical State Machines[20] could be a solution to this problem.

Our solution to this problem is to hide all the values under higher level concepts,
such as the challenge and diversity measures described earlier, and let the weights
be generated automatically based on those higher level values. Having a way to
measure challenge and diversity and the ability to optimize them not only helps
solve the problem of parameter creep but also allow the behavior tree designer to
instantly see the impact of changing one of the lower level float values.

We need to find weights such that the combined challenge and behavioral diver-
sity is as high as possible. It can be hard to illustrate as there typically are many
variables to consider and presenting the function which is to be optimized graph-
ically is impossible as it have too many dimensions. With a selector with only two
nodes, the challenge and diversity can be illustrated as in Figure 4.11. The x-axis
represent the value of two weights w1 and w2 = 1−w1. The green line represent the
challenge level for the combinations of the two weights, with the most challenging
point at (0.3, 0.7). The red line represent the diversity with the most diverse point
at the midpoint. The orange line represent the combined measure weighting the
two measures evenly. The black line is the derivative of the two measures, with the
most optimal point at where this line is equal to zero.

It would give the highest challenge level to weigh the highest valued action 1.0
and the rest 0.0, but this would give a behavioral diversity of one, thus giving us
an interest of 1.0 (assumed equal weights for challenge and behavioral diversity).
Finding the highest interest is a compromise between these two values.

4.3.1. Three Variable Interest Optimization

To demonstrate how we find the optimal weights for optimal interest values, we
use an example with three weights. The unknown weights are named w1, w2 and
w3. Variables p1 to p3 are known success rates for each sub-behavior. k1 and k2 are
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Figure 4.11.: Graphing of diversity and challenge

constants controlling the contribution of the interest of diversity and challenge. k1

should sum to one, as should w1 to w3, and p1 to p3.

One way to solve the problem of finding optimal values for the weights in both
challenge and behavioral diversity levels is to treat it as a geometric problem and
using a distance metric between the point (instance of weights) and the optimal
one. In the case of behavioral diversity the most diverse configuration is when all
weights are the same, we can then calculate how diverse an instance is by the dis-
tance from that instance to the optimal one. We scale this such that the optimal
configuration gives a value of 1.0 and the configuration furthest away (i.e. the one
with one weight 1.0 and the rest 0.0) a value of 0.0.

In the case of challenge, we can use the distance to the case where one weight
is 1.0 and the rest is 0.0.

These two values combined gives the final interest (except for weights between
them).
But how do we fine the optimal one: simple, we just have to find the maximum of
the combined function. This can be done analytical by finding the derivative of the
combined function and set equal zero, i.e find extrema.

Definition 4.13 describes the interest of a behavior of a selector using a combi-
nation of entropy[23] for diversity and KL-divergence [24][18] for challenge.

E = k1(w1 lnw1 + w2 lnw2 + w3 lnw3) + k2(w1 ln
w1

p1
+ w2 ln

w2

p2
+ w3 ln

w3

p3
) (4.13)

This formulation can be rewritten to so that w3 is written as 1 − w1 − w2 as they
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sum to one.

E = k1[w1 lnw1 + w2 lnw2 + (1− w1 − w2) ln(1− w1 − w2)]

+ k2[w1 ln
w1

p1
+ w2 ln

w2

p2
+ (1− w1 − w2) ln

1− w1 − w2

p3
] (4.14)

Rewrite logarithms from fractions to difference.

E = k1[w1 lnw1 + w2 lnw2 + (1− w1 − w2) ln(1− w1 − w2)]
+ k2[w1 lnw1 − w1 ln p1 + w2 lnw2 − w2 ln p2

+ (1− w1 − w2) ln(1− w1 − w2)− (1− w1 − w2) ln p3] (4.15)

Factor out (k1 + k2) and k2.

E = (k1 + k2)w1 lnw1 + (k1 + k2)w2 lnw2 + (k1 + k2)(1− w1 − w2) ln(1− w1 − w2)
− [k2w1 ln p1 + k2w2 ln p2 + k2(1− w1 − w2) ln p3] (4.16)

Find derivative with respect to w1 and w2, and set equal to zero to find extrema.

∂E

∂w1
= (k1 + k2)[ln

w1

1− w1 − w2
]− k2[ln p1 − ln p3] = 0

∂E

∂w2
= (k1 + k2)[ln

w2

1− w1 − w2
]− k2[ln p2 − ln p3] = 0

(4.17)

Isolate expressions in 4.17 that involve the weights in both equations.

w1

1− w1 − w2
= exp

k2(ln p1 − ln p3)
k1 + k2

w2

1− w1 − w2
= exp

k2(ln p2 − ln p3)
k1 + k2

(4.18)

Isolate 1 − w1 − w2 in both equations, set them equal and isolate weights in the
equation.

w1

w2
= exp

k2(ln p1 − ln p2)
k1 + k2

(4.19)

Isolate w1 in equation 4.18 and replace w2 using equation 4.19.

w1 = exp
k2(ln p1 − ln p3)

k1 + k2
− exp

k2(ln p1 − ln p3)
k1 + k2

· w1

− w1 · exp
k2(ln p2 − ln p1)

k1 + k2
· exp

k2(ln p1 − ln p3)
k1 + k2

(4.20)

Isolate w1 such that we have an expression for w1 not involving any weights, only
the success rates and the k constants.

w1 =
exp k2(ln p1−ln p3)

k1+k2

1 + exp k2
k1+k2

(ln p1 − ln p3) + exp k2
k1+k2

(ln p2 − ln p3)
(4.21)

This is symmetric for w2 and once w1 and w2 is determined w3 is just 1−w1 −w2.
But this only works for three weights in total, we want a to be able to find n weights.
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4.3.2. Optimal Weight Generalization

Here we generalize the definition of interest using entropy and KL-divergence to be
defined on an arbitrary number of weights w1 to wn. Apart from that the definition
is the same.

E = k1(w1 lnw1 + · · ·+ wi lnwi + · · ·+ wn lnwn)

+ k2(w1 ln
w1

p1
+ · · ·+ wi ln

wi
pi

+ · · ·+ wn ln
wn
pn

) (4.22)

As with the three weight case, we can write one of the weights named wi as 1
minus the sum of all the other weights.

E = k1[w1 lnw1 + · · ·+ wi−1 lnwi−1 + (1− w1 − · · · − wi−1 − wi+1 − · · · − wn)
ln(1− w1 − · · · − wi−1 − wi+1 − · · · − wn) + · · ·+ wn lnwn]

+ k2[w1 ln
w1

p1
+ · · ·+ (1− w1 − w2 − wi−1 − wi+1 − wn)

ln
(1− w1 − w2 − wi−1 − wi+1 − wn)

p3
+ wn ln

wn
pn

] (4.23)

We then rewrite the logarithms and factor out the ks as with the three weight
case.

E = (k1 + k2)[w1 lnw1 + · · ·+ wi−1 lnwi−1 + wi+1 lnwi+1 + wn lnwn
+ (1− w1 − w2 − wi−1 − wi+1 − wn) ln(1− w1 − w2 − wi−1 − wi+1 − wn)]

− k2[w1 ln p1 + · · ·+ wi−1 ln pi−1

+ (1− w1 − w2 − wi−1 − wi+1 − wn) ln pi + wn ln pn] (4.24)

We then differentiate, set equal to zero to find the extrema of the functions with
respect to w1 to wn except for wi.

∂E

∂w1
= (k1 + k2)[ln

w1

1− w1 − w2 − wi−1 − wi+1 − wn
]− k2[ln p1 − ln pi] = 0

∂E

∂w2
= (k1 + k2)[ln

w2

1− w1 − w2 − wi−1 − wi+1 − wn
]− k2[ln p2 − ln pi] = 0

∂E

∂wi−1
= (k1 + k2)[ln

w2

1− w1 − w2 − wi−1 − wi+1 − wn
]− k2[ln pi−1 − ln pi] = 0

(4.25)

We rewrite these n− 1 equations to isolate the weights.

w1

1− wi−1 − wi+1 − · · · − wn
= exp

k2(ln p1
pi

)

k1 + k2

...

wi−1

1−
∑
j 6=i wj

= exp
k2(ln pi−1

pi
)

k1 + k2

(4.26)

And then isolate (1−
∑
j 6=i wj) in equations 4.26 and set all these equations equal.

w1

exp
k2(ln

p1
pi

)

k1+k2

= · · · = wi−1

exp
k2(ln

pi−1
pi

)

k1+k2

= · · · = wn

exp
k2(ln

pn
pi

)

k1+k2

= w (4.27)
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Using equations 4.26 and replace the weights with an expression using only the
success rates p1 to pn multiplied with the factor w which is the ratio between the
success rates and the associated weights obtained in equation 4.27. With this we
obtain an equation 4.28 for an arbitrary weight wj.

w · exp
k2 ln

pj
pi

k1+k2

1−
∑
j 6=i w · exp k2 ln pj/pi

k1+k2

= exp(
k2

k1 + k2
· ln pj

pi
) (4.28)

w = 1− w ·
∑
j 6=i

exp
k2

k1 + k2
ln
pj
pi

(4.29)

Rewriting equation 4.28 we get an equation for w.

w =
1

1 +
∑
j 6=i exp k2

k1+k2
ln pj

pi

(4.30)

We can now find expressions for arbitrary weights w1 to wn by using equations
4.27 and 4.30.

w1 =
exp k2

k1+k2

p1
pi

1 +
∑
j 6=i exp k2

k1+k2
ln pj

pi

(4.31)

Use that the weights should always sum to one.

wi = 1−
∑
j 6=i

wj (4.32)

Substitute weight w1 from equation 4.31 and weights w2 to wn similarly. Is fur-
ther simplified such that the exponential function is no longer needed.

wi = 1−
∑
j 6=i

pj

pi

k2
k1+k2

1 +
∑
j 6=i

pj

pi

k2
k1+k2

(4.33)

Rewrite to sum over all successrates including the ith one.

wi = 1−
∑n
j=1

pj

pi

k2
k1+k2 − 1∑n

j=1
pj

pi

k2
k1+k2

(4.34)

This yields the final formulation of the optimal weight of an arbitrary action in a
selector.

wi =
1∑n

j=1
pj

pi

k2
k1+k2

(4.35)

In the case where k1 is 1, that is all the weight is on the behavioral diversity and
none is on challenge, the whole expression k2/k1 + k2 becomes zero and the terms
all become 1. Now the sum can be written 1 ·n, thus the whole equation becomes 1
over n. This is by the definition of behavioral diversity the most diverse case as we
would want it to.
In the other extreme case where k2 is 1, all the weight is on the challenge part of
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the measure. In this case the expression k2/k1 + k2 becomes one and all the terms
simply become pj/pi, summed over j this becomes 1/pi. The expression 1/(1/pi)
becomes simply pi, thus all the weights reduces to the success rate, which is the
case we defined as the most challenging case.
Adjusting k1 and k2 can then be used to tweak the method to either prefer diversity
or challenge.

Note that throughout the rest of the report k1 refers to the weight of behavior
diversity and k2 to the weight of the challenge.

4.3.3. Optimizing Entire Behavior Trees

Now we have a method to find the optimal weights for a single selector with an
arbitrary number of sub-actions. In order for this to be useful in general behavior
trees it needs to be possible to determine optimal weights for arbitrary behavior
trees including multiple selectors and sequences.

Global Path Based Method

One way to determine the diversity and challenge of an arbitrary behavior tree is
to convert the tree into its canonical form with only one selector with a list of sim-
ple actions. Now the general solution for optimizing behavior trees can be applied
directly.

To do this we start with an arbitrary behavior tree. The selectors of this tree
are then combined as described in 4.2.2 to 4.2.4 and shown in algorithm 1.
Then we combine the sequences as in 4.2.1, creating a much simpler behavior with
approximately the same behavior and more importantly diversity and challenge.

Algorithm 1 Combine Selectors
Require: An arbitrary behavior tree

allSelectors ← getAllSelectors(BT)
for each selector in allSelectors do

if parent is a selector then
for each child of selector do

parent(child) ← parent(selector)
weight(child) ← weight(selector) ∗ weight(child)
children(parent(selector)) ← child

Ensure: A behavior tree with reduced selectors

But to optimize the weights of the tree for diversity and challenge, we need to
eliminate the sequences. We do this by the method described in 4.1.2 which com-
bines possible paths into simple actions allowing us to eliminate the sequences.
This is done from the leaf level up to the root level. Algorithm 2 on the next page
shows the code for accomplishing this task.

The algorithm first gets all of the sequences in the current behavior tree or sub-
tree. Then it combines any simple behaviors in the sequences followed by then
running through every of its children, combing any child selector with any simple
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Algorithm 2 Convert Sequences
Require: An arbitrary behavior tree

allSequences ← getAllSequnces(BT)
for each sequence in allSequences do

combinedSimpleBehaviors ← combineSimpleSequenceBehavios(sequence)
for each child of sequence do

if child is a selector then
combinedSimpleBehaviors ← combineSimpleAndSelectorBehav-
iors(combinedSimpleBehaviors, selector)

setChildren(sequence, combinedSimpleBehaviors) setAsSelector(sequence)
Ensure: A behavior tree with reduced selectors

combined behaviors, such that every possible combination is created. When com-
bining two nodes their success are multiplied together to form the combined nodes
success rate. Lastly it sets the newly combined behaviors as the children of the
sequence and sets a flag on the sequence which defines that the sequence now has
been converted to a selector.

We can now combine the newly created selectors with the existing selectors the
same we combined selectors before.

Algorithm 3 Canonic Behavior Tree
Require: An Arbitrary Behavior Tree

selectors ← getAllSelectors(BT)
selectors ← restructureSelectors(BT,selectors)
selectors ← convertSequencesToSelectors(BT,selectors)
selectors ← restructureSelectors(BT,selectors)

Ensure: A Canonical Behavior Tree

Now we have a behavior tree the canonical form, form which we can calculate
the optimal weights.
Obviously the behavior tree will not have the same behavior after all these transi-
tions, which is described in subsection 4.2.2 on page 23.

Because we want to use the original behavior for actual execution and not our
converted tree. We need to convert the calculated weights back such that they can
be used in the original tree.

Algorithm 4 Convert Selector Weights Back
Require: Original and canonical behavior trees

selectors ← sortSelectorsFromBottom(originalBT)
simplifiedselectors ← selectors(canonicalBT)
for each selector and simplified selector do

selector.weight ← sum(simplifiedselector.actions.weight)
for each action in simplifiedselector.actions do

selector.action.weight ← action.weight / selector.weight
Ensure: A behavior tree with weights adjusted
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The method shown in algorithm 4 convert the weights found by the weight op-
timizer back such that they can be used in the original behavior tree. To do this
it need both the converted tree and the original. It should be noted that simpli-
fiedselector contains only the actions corresponding to the actions of the original
selector.

Algorithm 5 Convert Sequence Weights Back
Require: Original and canonical behavior trees

behaviors ← getAllSimpleBehaviors(origBT)
for each behavior X in behaviors do
X.weight ← 0.0
for each behavior Y in canonicalBT that contain X do
X.weight += Y .weight

sequences ← getAllSequenceBehaviors(origBT)
for each sequence X in sequences do

selectors ← getAllSelectorsBehaviors(sequence)
for each selector Y in selectors do

normalizeChildrenWeights(selectors)
Ensure: A behavior tree with weights adjusted

Algorithm 5 is similar to 4, but convert weights back to sequences instead of
selectors. It uses the calculated weights to determine the probability of a sequence
starting with a particular behavior. Afterwards it insures that any selectors get
their child weights normalized such that they are in the range between 0 and 1.
The main issue with this method is that it is expensive to run because converting
sequences to selectors can be expensive. The method also involves a lot of con-
verting back and forth between different tree representations which is also time
consuming.

Local Method with Selector Concatenation

Because the method involving sequence to selector conversion is expensive, we pro-
pose an alternative approach avoiding the expensive operation. In this approach
we only concatenate the selectors ,to allow our optimizer to work over larger be-
haviors, but we treat the sequences as simple actions and optimize sub-behaviors
locally.
We start with an arbitrary behavior tree and combine the selectors as described in
4.2.2 to 4.2.4.
We now run the optimization locally for each of the remaining selectors treating all
sequences as simple actions when seen from above in the tree.

We then convert the weights back to the original tree and we are done. This
is actually done by using algorithm 4 on the preceding page and running this on
each of the remaining probability selectors in the tree. Note that the originalBT will
be current selector’s original form while the canonical behavior tree is the current
selector’s canonical form.

Obviously this completely ignores any knowledge about sequences because the
intuition behind this method is that sequences does not add to the diversity and
challenge directly, only selectors do this as described in subsection 4.1.5 on page 23.
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Entirely Local Method

This is the simplest possible method to used in that it only considers local opti-
mizations.

We start with some arbitrary behavior tree and calculate the optimal weights in-
dependently for all selectors. This happens directly on the tree and ignores the
existence of sequences and without any attempt at global optimization.

With this method there are no need to convert the resulting weights back to the
original tree, as no changes have been introduced to the tree.

This naive assumption that we can optimize locally and achieve results might be
practical to use in some cases, such as weighting different high-level strategies. It
also have the advantage that it is cheap to run and scales nicely. But it does not
guarantee to be optimal in any way.

4.4. Conclusion

Over the course of the last many pages we have constructed ways of measuring
and optimizing behavior trees, and finally how to optimize the interest value of a
behavior tree. Three methods for optimizing the value have been suggested, and
we must now begin to investigate which are appropriate in which situations.
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Part II

SMARTS Revisited

SMARTS is a generic game AI system based on the con-
cept of Behavior Trees, which in this revised version also
includes a generalised perception system.
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CHAPTER

5

SMARTS LIBRARY

To be able to perform an evaluation of the various methods presented in the pre-
vious chapter, an implementation of behavior trees is needed. While the SMARTS
Library in the form in which it existed at the end of 2009 did work, its construc-
tion was based on various assumptions which later proved to be problematic when
using it in a practical application.

As such, we believe that it is advantageous to spend some time conducting a
re-evaluation of the system, which will later allow us to use the library in the
evaluation process in a more effective manner than it was possible during the
evaluation period of Where Academic AI Meets Game AI[16].

In this chapter we will look at issues that were encountered because of the pre-
vious design of the SMARTS Library. We will also re-design parts of the SMARTS
Library for being able to solve some of these issues.

5.1. Analysis

In this section we will reflect on the issues that the first SMARTS Library design
presented us with, as discovered through its use.

5.1.1. Tree structure

The previous behavior tree design[16] used a two layer tree structure, The first
layer was the internal structure of the tree, while the second layer contained all
the functionality e.g selectors, sequences, and so forth.

This structure gave an unnecessary memory overhead because of the two layer
structure, as well as introducing a significant number of context switches and
call stack usage because of the internal hierarchical structure when executing the
behavior trees. Furthermore problems with function naming arose, in that some
of the function names were not as intuitive or describing as they could have been.

The issues regarding memory overhead and naming conventions can be solved
by using a single tree structure instead a two layer version used now. Both issues
with context switching and call stack usage can be solved having a list instead
of the tree structure, though the tree structure is used for graphical and design
purposes. Each tree node will point at the locations in the list where its children
are placed, thereby reducing the amount of context switches when the character
is calling its think functions.

Another way to solve this problem is to manually have a call stack together
with keeping the single layer tree structure. This solutions will provide the same
advantages as above, but it is not necessary to saving a lot of indices to other
nodes, because it is just necessary to pop the top of the stack when a tree node
has finished executing.
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For being able to do these kinds of execution it would be necessary with an
scheduler with ensures the correct node in the tree is executed, together with sav-
ing and restore the execution states. A scheduler would also make implementing
interrupts and resumption in behavior trees easier

5.1.2. Parallels and Threading

During the implementation of the parallels composite[16, p. 9] we decided to use
threads to implement this tree node, for being able to check any conditions and
running the subtrees at the same time, this decision proved to be a source to great
number of problems.

First of all, we had to create synchronizations points in the implementation, for
being able to stop and synchronize all threads in a parallel. Furthermore a lot of
deadlocks on mutexes occurred, which made the threads stall and not end their
execution, requiring us to have to add a timeout when executing the threads, so
that the behavior trees could recover from these incidents. Debugging the code for
errors and bugs is almost impossible because of the threads. It is possible to see
that something went wrong and where in the code, but tracing the origin of the
error is highly complex.

There are several solutions to this problem, where one is to use Qt’s signal / slot
functionality, such that the behavior tree will only get updates when the conditions
has been fulfilled, instead of querying for the values in a thread. Another solution
is to force the behavior trees to either run at fixed time or fixed frame execution,
such that the conditions will be checked every time the given behavior resumes
execution. It is also possible to connect to Qt’s event system, and thereby sending
and handling events in different parts of the AI system.

Because of the design, each character in the game is run in its own thread. This
insures that it is possible to reuse behavior trees, without having a copy of the
tree for each of the characters. The same problems as above can arise, where
the game and the AI threads have to synchronize. By using a scheduler and a
perception system for each character, it is possible to just to pass the character as
an argument to the currently running node, without each character having to run
in a separate thread. The scheduler would then ensure the correct execution state
is used when a character executes its behaviors.

5.2. Re-Design

In this section the re-design of a number of SMARTS Library components are de-
scribed starting with the new over-all design followed by the btNode class together
with node types derived from this class. Then the btCharacter class is described
together with the new scheduler placed in this class’ think function.

5.2.1. Over-all Design

The SMARTS Library will be changed because of some the issues encountered in
the last design. One of the big design changes is the elimination of threads in
parallels, and to do this the SMARTS Library is changed to employ a scheduler
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Figure 5.1.: Class diagram showing the overall structure of the SMARTS Library

for managing the execution of both behavior trees, with particular features for
parallels. With this decision the SMARTS Library will run at fixed time/frame
where previously it would run until the behavior tree had finished executing.

Figure 5.1 shows the over all design of the architecture of SMARTS Library.
It shows that the btNodeType has been removed from the library, and the class
btNode has taken its place, both as the internal structure of the tree but also as the
class that every tree node has to inherit from. Furthermore the btCharacter class
will contain the scheduler, which means that every character in a game will have
to inherit from btCharacter to be able to utilize the scheduler and the perception
system described later. Both the btBrain and the btFactory have not been re-
designed, as this was not necessary.

5.2.2. btNode

The btNode class is basically a merge between btNode and btNodeType[16, p. 33],
where the btNodeType is removed and its functionality relocated to btNode. This
means that btNode is functioning as both the internal tree structure and as the
super class for every node type in the behavior tree.

Outside of the two standard node types[16, p. 24] we have added two new node
types to the library, which were previously found in the test bed application, which
are:

Probability Selector: As a normal selector this node type selects as child for exe-
cution and only returns success if the child succeeds, else it will continue
selecting children until there is none left and thereby return false. The dif-
ference is that this selector uses probabilities for selecting a child, and these
probabilities are set in the SMARTS Designer.

Parallel: This node type was described[16, p. 9] but not implemented in the pre-
vious version of SMARTS Library. A parallel runs all of its children simulta-
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Figure 5.2.: Sequence diagram showing how the scheduler works

neously and finishes execution when the children have fulfilled certain termi-
nation conditions. It also insures cleanly termination of all its children.

5.2.3. btCharacter

The btCharacter is base class for every character in a game using the SMARTS
Library[16, p. 24]. The only change to this class is that it now contains a sched-
uler for executing its behavior tree and a function that is used for making the
btCharacter take a decision with the behavior tree. This function will then be
called with a fixed time/frame interval from the game loop.

5.2.4. Scheduler

The new scheduler is the biggest change to both the btCharacter class specifically
and the SMARTS Library in general. It is placed on the btCharacter and is called
through a function called think.

Figure 5.2 shows an example of how the scheduler works in the btCharacter.
If we follow the sequence numbers of the figure, the scheduler runs as follows:

1. The btCharacter’s think function is called by the game loop in a frame/time
slice.

2. In the same frame/time slice the current btNode’s run function is called.
The btNode does not finish execution but because of the frame/fixed time
restriction, it has to return with a status message which indicates it is not
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Figure 5.3.: Shows the scheduler structure when only one stack is used

done. The btNode has to return at a point, which can be resumed when run
is called again. The btCharacter also returns, but does not return a status
message, as this is not necessary outside the btCharacter.

3. In the next frame /time slice the btCharacter’s think function is called
again.

4. During the same frame/time slice it also resumes the currently running
btNode. The btNode decides that it wants to run a child and returns a status
message to btCharacter indicating that it wants to run a child.

5. The btCharacter then retrieves the child and returns.

6. In the next frame /time slice the btCharacter’s think function is called once
again.

7. The btCharacter then runs the child, and the child returns with a given
status message.

There are different possibilities for creating the structure which the scheduler
uses for executing the behavior tree.

Stack-based Scheduler

A stack-based scheduler would use a stack for its execution of the behavior tree.
By doing it this way, the stack would contain the currently executing instances of
btNode, where the top of the stack would the currently running btNode. It it also
possible to get the parent of the currently executing btNode, because it is just the
btNode that is just beneath the top btNode.

To be able to support parallels with this kind of stack-based scheduler, the
scheduler needs to point on each parallel in the stack, this is show on figure 5.3.
Furthermore is has to point at the position of each of children’s currently executing
tree node of their subtrees. The reason for this is the scheduler has to run every
parallel child simultaneously, which means it has to switch between children dur-
ing the execution to give the illusion of running the children ”simultaneously”. If
we are using only one stack there will have to be a great amount of data handling,
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Figure 5.4.: Shows the scheduler structure when using branching stacks

Figure 5.5.: Shows the scheduler structure when using queues and stacks

because it would necessary to pop the stack until a parallel is at the top and push
the next parallel child’s subtree onto the stack before it’s execution.

Stack-based Scheduler with Branching

Another variant of the stack-based scheduler uses branching to handle the par-
allels, shown 5.4. Whenever a parallel executes it branches out such each child
has its own execution stack, and these are then run for themselves, and when the
stack returns it returns to the parent execution stack. If we are using branch-
ing stacks there will also be a great amount of data handling, but here it would
not be necessary to pop a stack until a parallel has been reached. Instead it is
just necessary to run the parallel’s children stacks. It is, however, necessary to
keep a pointer to each stack, keep references to their parent parallels, and insure
a fair execution policy for the stacks, such that it gives the illusion of running
simultaneously.
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Figure 5.6.: Shows the three queues used in the scheduler

Queue- & Stack-based Scheduler

The scheduler could also combine queues and stacks for still having some of the
advantages with a stack-based scheduler which uses branching but also by en-
suring a fair execution of the stacks. If the scheduler is using queues it would
contain a queue which holds the execution stacks. If there were no parallels in the
behavior tree, the queue would only contain one stack which would be dequeued
when it is time for execution and enqueued when the frame/time slice has expired.

When a parallel is encountered during execution it will remain at the top on
its execution stack, and a execution stack for each of the parallel children will be
added to the queue. The scheduler will then run through the queue and execut-
ing the stacks, dequeueing and enqueueing when necessary. When a stack then
finishes execution it is removed from the queue, though this only applies for the
stacks created from parallels. Figure 5.5 on the preceding page shows a queue
which runs the normal stack, and a queue which has an parallel on the main
stack, and all of its children on new stacks in the queue.

5.3. Implementation Details

In this section we will describe the scheduler which is implemented in the class
btCharacter and which is used to execute the behavior tree of the btCharacter.
In subsection 5.2.4 on page 40 a queue- & stack-based scheduler was described.
This scheduler variant was chosen for implementation, because it is easier to sup-
port parallels than with a stack and branching stack. We first describe the queues
used in the scheduler followed by how the execution is done by the scheduler.
Then we describe how btProbSelectors and btParallels are handled inside
the scheduler during execution, because these two node types require extra data
structures for saving the execution states.

5.3.1. Queues

The scheduler uses three different queues for executing the behavior tree, these
are shown in listing 5.1 on the next page. Before explaining what the purposes
of the three queues are, it is important to state that each index in the queue
m currentNodeStackQueue implicitly states that the same index in the queue
m nodesStatusQueue and in the m currentChildStackQueue queue holds infor-
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mation used when running that particular execution stack. Therefore it is impor-
tant that each of the three queues are dequeued and enqueued at the same time
to keep the correspondence between the queues. Figure 5.6 on the preceding page
illustrates this.

Listing 5.1: Queues used in the scheduler
1 QQueue<btNode::status> m_nodesStatusQueue;
2 QQueue<QPair<QStack<btNode*>*, QStack<btNode*>*> > m_currentNodeStackQueue;
3 QQueue<QStack<int> > m_currentChildStackQueue;

The m currentNodeStackQueue holds the execution stacks but not as a QStack
but as QPair<QStack<btNode*>*, QStack<btNode*>*>, where the first stack is
the current execution stack while the second is the parent execution stack. The
reason for the use QPair is described in Section 5.3.4 on page 47.

The m currentChildStackQueue contains QStack<int> instances which hold
the current child indices. These stacks have the same size as the corresponding
stacks from m currentNodeStackQueue, because they contain the current child
index for each of the btNodes in the execution stacks.

Lastly m nodesStatusQueue contains the btNode::status for the correspond-
ing execution stacks.

5.3.2. Execution

We have described the three queues used in the scheduler, and we have come to
the point where we must describe how the scheduler executes. The scheduler is
part of the btCharacter’s function think and runs every time think is called. The
scheduler runs i three stages:

1. Retrieve an execution stack and and needed execution information

2. Restore the execution state and run the current btNode

3. Handle the returned btNode::status from the current btNode

Stage one

Listing 5.2 shows the first stage in think is to retrieve a execution stack and
the top btNode from the stack. It also dequeues both m currentChildStackQueue
and m nodesStatusQueue to be able to set the nodeStatus and child index for that
particular execution stack. currentParent is initialized to NULL but the scheduler
will set the currentParent if possible.

Listing 5.2: The code for retrieving an execution stack and the information needed
for execution

1 ...
2 currentChildParentStackPair = m_currentNodeStackQueue.dequeue();
3 currentNodeStack = currentChildParentStackPair.first;
4 currentChildStack = m_currentChildStackQueue.dequeue();
5 nodeStatus = m_nodesStatusQueue.dequeue();
6
7 //retrieve the executing node
8 btNode* currentNode = currentNodeStack->top();
9

10 //check if it s possible to set parent, and set it if possible
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11 if(currentNodeStack->count() > 1)
12 {
13 currentParent = currentNodeStack->at(currentNodeStack->count() - 2);
14 }
15
16 //check if it s possible to set current child, and set it if possible
17 if(currentChildStack.count() > 0)
18 {
19 currentChildIndex = currentChildStack.pop();
20 }
21 ...

Stage two

In this stage the scheduler restores the current btNode execution state, by setting
its current child index, its current child status, and its parent. The reason for
setting the current child index and current child status is, that if in the last call of
think one of the current btNode children finished execution, then this information
would have to be passed up to the current btNode. When this is done the current
btNode is run.

Listing 5.3 shows the code for this stage.

Listing 5.3: The code for restoring the execution state
1 ...
2 //restore the execution state of the current executing node
3 currentNode->setCurrentChildIndex(currentChildIndex);
4 currentNode->setCurrentChildStatus(nodeStatus);
5 currentNode->setParentNode(currentParent);
6
7 //run the node
8 nodeStatus = currentNode->run(this);
9 ...

Stage three

In the last stage the status from the current btNode is handled. There are three
possible cases: btNode::RunningChild, btNode::Running and one case for both
btNode::Succeeded and btNode::Failed.

When the returned status is a btNode::RunningChild, the scheduler pushes
the child together with its index such that it is possible to return with same in-
formation when the child terminates. Listing 5.4 shows the code for this case.
Furthermore a zero is pushed onto the currentChildStack, which is used to ini-
tialize the child’s current child index in the next call of think. At the end both
stacks are pushed onto their queues and an initial btNode::None is pushed on
the status queue.

Listing 5.4: Code for the case btNode::RunningChild
1 ...
2 case btNode::RunningChild:
3 //when running child, push the child and child index onto the stacks
4 currentNodeStack->push(currentNode->currentChild());
5 currentChildStack.push(currentNode->currentChildIndex());
6 currentChildStack.push(0);
7
8 //enqueue the stacks and status
9 m_currentNodeStackQueue.enqueue(currentChildParentStackPair);

10 m_currentChildStackQueue.enqueue(currentChildStack);
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11
12 m_nodesStatusQueue.enqueue(btNode::None);
13 ...

Listing 5.5 shows the case for whenever a btNode succeeds or fails. The code
starts out with popping both currentNodeStack and currentChildStack stacks
if the currentNodeStack stack size is bigger than one. If this is not the case, then
the scheduler will push a zero onto the currentChildStack if it is empty and if
the currentNode is the top node of the behavior tree it also resets the nodeStatus.

Furthermore if the currentNodeStack is not NULL then it is enqueued together
with the currentChildStack and nodeStatus.

Listing 5.5: Code for the case btNode::Succeeded and btNode::Failed
1 ...
2 case btNode::Failed:
3 case btNode::Succeeded:
4 //when the node fails or succeeds
5 if(currentNodeStack->count() > 1)
6 {
7 //if there is more than one node in the stack, pop it
8 currentNodeStack->pop();
9 if(currentChildStack.count() > 0)

10 {
11 currentChildStack.pop();
12 }
13 }
14 else
15 {
16 //else if count == 0 then push a 0 on it
17 if(currentChildStack.count() == 0)
18 {
19 currentChildStack.push(0);
20 }
21
22 //if the node is the root, reset status
23 if(currentNode == m_behaviortree)
24 nodeStatus = btNode::None;
25 }
26 ...
27 if(currentNodeStack)
28 {
29 //if node stack is not deleted, enqueue it again
30 m_currentNodeStackQueue.enqueue(currentChildParentStackPair);
31 m_currentChildStackQueue.enqueue(currentChildStack);
32 m_nodesStatusQueue.enqueue(nodeStatus);
33 }
34 break;
35 ...

In the case of a btNode::Running status the currentChildStack pushes the
current child index and both stacks are enqueued, as is the nodeStatus. List-
ing 5.6 displays the code for this case.

Listing 5.6: Code for the btNode::Running case
1 ...
2 case btNode::Running:
3 //enqueue stack and stuff
4 currentChildIndex = currentNode->currentChildIndex();
5 m_currentNodeStackQueue.enqueue(currentChildParentStackPair);
6 currentChildStack.push(currentChildIndex);
7 m_currentChildStackQueue.enqueue(currentChildStack);
8 m_nodesStatusQueue.enqueue(nodeStatus);
9 break;

10 ...
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5.3.3. btProbSelectors

We have special cases for btProbSelectors because these need some extra han-
dling in the scheduler. The special handling of this node type is done in stages one
and three described in the previous section. The btProbSelector class uses a
hash containing stacks to save its probNodes together with information regarding
which child nodes have been visited.

In stage one we check if the currentNode is a btProbSelectorNode and if this
is the case, we cast it. Next we check if we have run it before, and if so then we
set the the information for that btProbSelectorNode by poping the stack which
corresponds to the currentNodeStack. Listing 5.7 shows the code.

Listing 5.7: The special case code for a btProbSelector in stage one
1 ...
2 if (qobject_cast<btProbSelectorNode*>(currentNode))
3 {
4 //if the current node is a probselector, cast it
5 probSelector = qobject_cast<btProbSelectorNode*>(currentNode);
6
7 //and set the probnodes if we have run it before
8 if(m_visitedProbChildrenHash.contains(currentNodeStack))
9 {

10 probSelector->setVisitedProbNodes(m_visitedProbChildrenHash[currentNodeStack].pop());
11 }
12 }
13 ..

For stage three listing 5.8 shows how a btProbSelector is handled when it
returns. For the case where the btProbSelector runs a child, we store the infor-
mation regarding which children have been visited alongside the other information
described in 5.3.2 on page 44.

If the btProbSelector succeeds or fails, and during the standard operations in
stage three, the scheduler removes the current hash entry if the stack is empty.

Listing 5.8: The special case code for a btProbSelector in stage three
1 ...
2 case btNode::RunningChild:
3 ...
4 if(probSelector)
5 {
6 m_visitedProbChildrenHash[currentNodeStack].push(probSelector->visitedProbNodes());
7 }
8 ...
9 case btNode::Failed:

10 case btNode::Succeeded:
11 ...
12 if(qobject_cast<btProbSelectorNode*>(currentNode))
13 {
14 //if probselector then remove the probnodes for this stack
15 if(m_visitedProbChildrenHash[currentNodeStack].count() == 0)
16 m_visitedProbChildrenHash.remove(currentNodeStack);
17 }
18 ...

5.3.4. btParallels

The btParallel class also needs special handling in the scheduler because of the
nature of it, where it runs every child in parallel. Again the special handling is done
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in stage one and stage three, as with the btProbSelector. btParallel uses a
multihash which uses the node stacks and entries and the list of btNode::status
as values, for identifying and being able to stop the parallel execution when certain
conditions has been met.

During stage one the scheduler first checks if the btNode is a btParallel. If
this is case it is first cast and if the btParallel has not been run before a node
stack and child stack is created for each child and pushed onto the queues to-
gether with a status of btNode::None. Furthermore a list of btNode::status
is created and stored in the multihash. Next the scheduler sets the current list of
btNode::status to the btParallel and it checks if it should terminate execution.
Listing 5.9 shows the code for stage one.

Listing 5.9: Code for special casing of btParallel during stage one
1 ...
2 else if (qobject_cast<btParallelNode*>(currentNode))
3 {
4 //if the current node is a parallel, cast it
5 parallel = qobject_cast<btParallelNode*>(currentNode);
6
7 //if it is the first time, create execution stacks, child stacks etc. for each child and

add them to the queue
8 if(nodeStatus == btNode::None)
9 {

10 QList<btNode::status>* childStatus = new QList<btNode::status>();
11
12 for(int i = 0; i < parallel->childCount(); i++)
13 {
14 QStack<btNode*>* newStack = new QStack<btNode*>();
15 newStack->push(parallel);
16 newStack->push(parallel->child(i));
17 QPair<QStack<btNode*>*, QStack<btNode*>*> pair;
18 pair.first = newStack;
19 pair.second = currentNodeStack;
20 m_currentNodeStackQueue.enqueue(pair);
21
22 childStatus->append(btNode::None);
23 m_nodesStatusQueue.enqueue(btNode::None);
24
25 m_parallelNodeStatusHash.insert(newStack, childStatus);
26
27 QStack<int> childStack = QStack<int>();
28 childStack.push(0);
29 m_currentChildStackQueue.append(childStack);
30 }
31
32 m_parallelNodeStatusHash.insert(currentNodeStack, childStatus);
33 nodeStatus = btNode::Running;
34 }
35
36 //check if termination conditions is fulfilled, return btNode::Running if not
37 parallel->setRunningNodesStatus(m_parallelNodeStatusHash.value(currentNodeStack));
38 nodeStatus = parallel->conditionsFulfilled();
39 }
40 ...

In stage three the btParallel only has special handling in the case where it
succeeds or fails, or one its children succeeds or fails. Listing 5.10 on the next
page shows the code for stage three and lines 5 to 19 handles the case where a
child of a btParallel succeeds or fails. If a child succeeds or fails the status
list is updated with the child status, and the child’s node stack and child stack is
not enqueued again. Furthermore the entry in the m parallelNodeStatusHash is
removed and if there are no more entries in the m parallelNodeStatusHash then
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currentNodeStack is deleted. Because of this the scheduler needs to check if the
currentNodeStack exists before trying to enqueue it during stage three.

Lines 21 through 32 handles the case where the currentNode first stops the ex-
ecution of btParallel and also removes the entry in m parallelNodeStatusHash
if the currentNodeStack is not NULL. Finally it deletes the list of btNode::status.

Listing 5.10: Code for the special casing of btParallel during stage three
1 ...
2 case btNode::Failed:
3 case btNode::Succeeded:
4 ...
5 if(currentParent != NULL && qobject_cast<btParallelNode*>(currentNode))
6 {
7 //if the parent is a parallel, set the status for that parallel.
8 parallel = qobject_cast<btParallelNode*>(currentParent);
9 QList<btNode::status>* m_parallelNodeStatus = m_parallelNodeStatusHash.value(

currentNodeStack);
10 m_parallelNodeStatus->replace(parallel->childNodeIndex(currentNode), nodeStatus);
11 m_parallelNodeStatusHash.remove(currentNodeStack, m_parallelNodeStatus);
12
13 if(m_parallelNodeStatusHash.count(currentNodeStack) == 0)
14 {
15 //remove the stack if there is no other node status in the hash
16 delete currentNodeStack;
17 currentNodeStack = NULL;
18 }
19 }
20
21 if(qobject_cast<btParallelNode*>(currentNode))
22 {
23 //if parallel stop the children and remove the node status list from the hash
24 stopParallelExecution(currentNode, currentChildParentStackPair.second);
25
26 if(currentNodeStack)
27 {
28 QList<btNode::status>* status = m_parallelNodeStatusHash.value(currentNodeStack

);
29 m_parallelNodeStatusHash.remove(currentNodeStack, m_parallelNodeStatusHash.

value(currentNodeStack));
30 delete status;
31 }
32 }
33 ...

5.4. Conclusion

During the first implementation of SMARTS Library we encountered problems dur-
ing runtime. We analyzed the problems, and we first discovered that there would
be a potentially huge number of context switches when traversing the tree struc-
ture. Furthermore threading was a huge problem due to e.g parallels. A re-design
of SMARTS Library was necessary to accommodate these problems and different
scheduler options were purposed for solving these problems. A scheduler using
queues and stacks was chosen for implementation as while it was more complex to
implement, it had a number of advantages over the other options. The new sched-
uler uses queues, stack and hashes from the Qt framework and can run every
parallels children using a form of simulated concurrency.
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CHAPTER

6

Perception

When creating behaviors for a game character, one problem which continuously
surfaces is how this character perceives information in the world it inhabits. Daniel
Sanchez-Crespo Dalmau[13] describes the structure of game AI systems as having
four parts:

• A sensor or input system

• A working memory

• A reasoning/analysis core

• An action/output system

Where Behavior Trees as implemented by SMARTS Library supply the last three
(the memory being the Character, the reasoning/analysis core being the structure
of the Behavior Tree itself and the action/output system being the behaviors which
affect changes in the world, tentatively named Actions), the first of these is not
as well defined. However, since the Character is used to provide information for
Conditions[10], which are a special type of leaf behavior node used for controlling
access to other behaviors[16, p.10], a system can be devised which provides the
character with a more varied view of the world.

The Conditions need a way of getting information about the world as seen through
the eyes of the character whose behavior is being dictated by the current run
through the behavior tree. Thus we arrive at the following proposal: Create a
perception system which can provide this information with varying amounts of
precision. This varying degree of precision is important when modelling charac-
ters who should be believable; their ability to not know everything about the world
precisely makes them capable of performing behavior in a more believable manner
than if you can simply see everything precisely - in short they will act less like the
proverbial robot.

6.1. Inspiration

Previous work in the area of perception in computer game AI is wide spread and
greatly different in style and complexity. To investigate the cause of the differ-
ent complexities, this section presents the context of some of the perception sys-
tems. The following is based on information from an article by Tom Leonard on
Gamasutra[19].
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6.1.1. Pac-ManTM

The simplest kind of perception in a game AI system is that exemplified by Namco’s
Pac-ManTM: This type of system has exact knowledge of the entire game world, and
is essentially all-knowing. This makes it easy to implement the perception system,
since no calculations are required to limit the knowledge any character has of the
world. It is suited to simplistic games or purely logic based games, in which the
characters are expected to behave in a mechanical fashion.

6.1.2. QuakeTM

In id Software’s successful first person shooter QuakeTM, the AI characters need
to know where the player charater is. They do this by first checking if the player
is inside a certain distance from them; the limit of their perception. Then a line of
sight check is performed, to assertain whether the player is in fact visible to the
AI character. This check is only performed if the player is inside the AI character’s
view cone (their field of view).

If the player is visible, the AI character knows the following:

• Where the player is and where he is looking

• The geometry of the surroundings

• Which weapons the AI character using and which the player using

Importantly, in QuakeTM all this information is absolute: The AI either knows the
information or it does not. This means that the calculations involved are minimal,
and the processing time can be spent on drawing items on the screen.

This is of course important in a game which originally was doing real 3D calcula-
tions on a desktop-class processor, rather than what is prevalent today; i.e. doing
graphics on a dedicated processing unit.

As such, the QuakeTMAI characters always operate with precise information,
but unlike Pac-ManTMthis information is limited in scope - the AI does not have
information on the player that it is not in fact able to sense (that is, it has no
information on the player when the player is not in line of sight).

6.1.3. Thief: The Dark ProjectTM

In the first person stealth based game Thief: The Dark ProjectTMthe AI characters
need to be able to sense their surroundings in a much more sophisticated way
than those in QuakeTM.

The game is based around the player sneaking around, attempting to not be seen
by guards. This requires the sensory system to be able to provide the AI characters
with more granular information on the player. The basic concept is similar to that
in QuakeTM, however multiple passes are performed on the sensing. The diagram
in Figure 6.1 on the facing page shows an example of how the system employs
multiple view cones to achieve varying levels of information certainty:

The five view cones are numbered in order of importance. This means that an
object in position A will be evaluated through view cone number 3, whereas an
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Figure 6.1.: The view cones of an AI character in Thief: The Dark ProjectTM

object is evaluated with view cone 1 irregardless of whether an object is in position
B or C.

This is a very high density information gathering system, which requires a not
inconsiderable amount of computation when sensing the world. In other words:
This type of system is only applicable in games where correct perception is highly
important to the game-play.

6.1.4. Age of EmpiresTMand WarcraftTM

The sensory system of the main AI character in a strategy game such as Age of
EmpiresTMis fundamentally different to that of those in the previously mentioned
games, in that the character has no physical representation in them. In stead it
needs a varied collection of more esoteric information, as described by Dalmau[13]:

• What is the balance of power in each subarea of the map?

• How much of each type of resource do I have?

• What is the breakdown of unit types: infantry, cavalry, and so on?

• What is my status in terms of the technology tree?

• What is the geometry of the game world?

In other words, there are no simple line-of-sight tests to be done here, but rather
it is a question of more general information about the state of the game world itself.
In Age of EmpiresTMthis information is contained in a memory base which does not
decay over time, in other words the AI character has photographic memory.

Other strategy games employ fading memory, or varied memory states for differ-
ent pieces of information: For example in WarcraftTMyou can explore the level to
gather information about the geometry of the game world, however once the recon-
naissance unit leaves an area, the information enemy on units occupying the area
is lost - that is it is immediately decayed - but the game world geometry is retained.
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6.2. Design

This section describes the design of the general perception system implemented for
use with SMARTS.

6.2.1. Setting Up the Criteria

After looking through four approaches to perception systems as found in the five
games presented above we can describe a number of concepts which should be
provided by a general perception system such as that which we propose the cre-
ation of, so as to allow for the creation of the widest possible array of game types:

Each item of perceived information, which shall be denominated a perception
atom, should be available with variable precision. If a perception atom is known
at 100% certainty, looking it up should not incur any performance penalties.

Any perception atom must be able to degrade over time, with a variable degree of
entropy. This simulates imperfect memory. Based on the idea that some pieces
of information should stay, while other memories should fade, the system should
be able to support perfect memory at no penalty.

To simplify calculations, the system should be able to support three levels of
precision:

• Perfect memory, which does not fade over time.

• An intermediate, Boolean level of precision, meaning in sort that it should be
able to retain perfect memory, until an exact time when the entirety of the
information is lost.

• Imperfect memory, which fades in precision over time, optionally fading en-
tirely.

Positional information is that which is relevant to a particular position in the world.
To find out whether a piece of information is available to a character, the charac-
ter’s position and orientation in space is combined with a geometric volume to
create the perception limit as used in QuakeTM, and then any number of view
cones can be applied.

The perception volume and all view cones have any number of values assigned,
correlated to each perception atom, describing the precision at which each atom
can be decided. This is done using a similar style of prioritisation as seen in
Thief: The Dark ProjectTM, with the addition that the system is usable with only
the perception volume.

As a final note on this subsystem is the technicality that since level geometry is
known, it should be possible to define a view volume larger than the level geometry,
in which case the calculation to assess whether objects are inside the volume is
not performed. The initial assessment is done on level load. This allows for a level
of effectiveness similar to that seen in Pac-ManTM.
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Figure 6.2.: A class diagram of the classes in the perception system

6.2.2. Library Design

The library as created should fit into the design of the existing SMARTS library.
As such it would make sense to have all perception checks go through the class
btCharacter. This, however, should very importantly not mean that the class
would be bloated with large amounts of new functionality, but rather that the
perception system should be accessed through the character.

The design is established in depth below, and is organised like so: The per-
ception system which the btCharacter class contains an instance of is called
btPerception, and this class in turn contains any number of references to percep-
tion atoms as described by the interface btPerceptionAtom. The perception atom
class instances request their information from instances of btPerceptionInfo,
which contain the actual information about the world. A class diagram describing
this can be seen in Figure 6.2.

btPerception contains functions which allows the user of the system to request
details on perception atoms through the character. This user can be either man-
ual users by way of coders, or designers creating behvaior trees who can check
perception atoms through decorators and Conditions. The check is done either by
name, or by pointer to the perception atom in question.

The btPerception class allows the perception atoms to request information on
the character’s position and orientation in the world (as provided by the game
engine), and also contains the perception limit and view cone information. For
reasons of easy calculation, the perception limit volume is described as a sphere
centered on the character. The view cones are represented as pyramids, for similar
reasons. Additionally, this makes each item easier to describe visually, which is
something of which the relevance will become obvious later.

The information available to the full system is stored in btPerceptionInfo in-
stances, and the value as perceived by each character is then stored in the in-
stances of btPerceptionAtom. The storage per character only happens when the
request for the information is made. Each btPerceptionInfo then informs the
connected btPerceptionAtom instances of any changes in its value. It is then up
to the btPerceptionAtom to decide when and how to update its internal knowl-
edge next.

The perception limit volume and view cones are defined using a system like that
seen in a 2D version in Figure 6.3 on the following page. As the sample data in
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Figure 6.3.: A hypothetical set of perception limit data for an AI character in
SMARTS. The character has three view cones: View cone 1 is oriented
in the same direction as the player, its radius the same as the percep-
tion limit volume, and the only value changed from the defaults is the
angle of extent. View cone 2 is rotated to the left, is a lot wider and
has its own radius. View cone 3 provides the spidey-sense described
in Thief: The Dark ProjectTM, and is similarly value changed to view
cone 2, though rotated 180 degrees from the player’s orientation.

the figure indicates, these two pieces of information are represented as follows:
The perception limit volume is represented simply by a radius, and each view cone
is represented by a radius and two angles (one for extent and one for deviation
from player orientation). To extend this into three dimensions, one only needs an
additional angle to define the view cones’ extent in the third dimension, and an
extra angle to define its elevation.

6.3. Implementation Details

In this section we will describe the implementation of the perception system in
SMARTS Library. We will start by describing the btPerception class, as this is the
main container for the other perception elements. This is followed by a description
of btPerceptionViewcone and lastly both of the classes btPerceptionAtom and
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btPerceptionInfo are described together, as they are heavily interconnected.

6.3.1. btPerception

This class is used as a data container and bonds btCharacter and the other
perception components together.

Listing 6.1: An excerpt of the header for the btPerception class
1 class btPerception : public QObject
2 {
3 ...
4 /**
5 * How precise the knowledge of an item found inside the perception limit is, if it is not
6 * inside a view cone. This defaults to 0, as the perception limit is normally used
7 * only as a potentiality check. If you set this above zero, a perception atom will be
8 * given this precision if it is found insive the perception limit, but not inside a view
9 * cone.

10 * 0 is no precision at all, 1.0 is full precision
11 */
12 qreal knowledgePrecision() const;
13 void setKnowledgePrecision(const qreal& newKnowledgePrecision);
14
15 /**
16 * The limit of the character’s perception. If left at 0, the limit will be the entire

level.
17 * Please note that this can potentially be very expensive, depending on level size.
18 */
19 qreal perceptionLimit() const;
20 void setPerceptionLimit(const qreal& newPerceptionLimit);
21
22 QList<btPerceptionViewcone*> viewCones() const;
23 void setViewCones(const QList<btPerceptionViewcone*> newViewCones);
24 void addViewCone(btPerceptionViewcone * viewcone);
25
26 QList<btPerceptionAtom*> perceptionAtoms() const;
27 btPerceptionAtom* perceptionAtom(const QString& name) const;
28 void addPerceptionAtom(btPerceptionAtom * perceptionAtom);
29 ...
30 };

Listing 6.1 shows an excerpt of the header file of the class btPerception. This
class firstly contains information regarding the precision of the knowledge avail-
able, together with the perception limit for the given btCharacter. Besides these
two values, btPerception also contains two lists where one contains instances of
btPerceptionViewcone and the other contains btPerceptionAtom instances. By
doing this, the perception is separated from btCharacter.

6.3.2. btPerceptionViewcone

The struct btPerceptionViewcone only contains public values, which are used
for setting both the range, angle and radius of the view cone. Furthermore it is
possible to set how precise the knowledge about information discovered inside the
view cone’s area is, and the position of the view cone in the list of instances of
btPerceptionViewcone on btPerception.

Listing 6.2: The public variables on btPerceptionViewcone

1 struct btPerceptionViewcone
2 {
3 ...
4 /**
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5 * The horizontal angle by which the view cone is offset from the character’s
orientation

6 * Note: This should be between -180 and 180
7 */
8 qreal offsetAngleHorizontal;
9 /**

10 * The vertical angle by which the view cone is offset from the character’s orientation
11 * Note: This should be between -180 and 180
12 */
13 qreal offsetAngleVertical;
14 /**
15 * The horizontal angle of extent of the view cone
16 * Note: This angle is from the center to one side, not from side to side
17 * Note: This should not be larger than 180
18 */
19 qreal extentAngleHorizontal;
20 /**
21 * The vertical angle of extent of the view cone
22 * Note: This angle is from the center to top, not from top to bottom
23 * Note: This should not be larger than 180
24 */
25 qreal extentAngleVertical;
26 /**
27 * The radius of the view cone.
28 * If this is left at 0, the limit used will be the character’s perception limit.
29 * Note: This should be no larger than the radius of the perception limit
30 */
31 qreal radius;
32 /**
33 * The precion of knowledge discovered in this view cone’s area of perception
34 * 0 is no precision at all, 1.0 is full precision
35 */
36 qreal knowledgePrecision;
37
38 int position;
39 };

Listing 6.2 above shows an excerpt of the header file, which only contains public
variables. The position of the btPerceptionViewcones in the list also specifies in
which order these would be checked during execution.

6.3.3. btPerceptionAtoms and btPerceptionInfo

In a game world there exists information on different objects, which the AI wants
know. Rather than having to search through all the objects in the game, the
classes btPerceptionAtoms and btPerceptionInfo are introduced to supply this
functionality in a way which allows the programmer to only have to query specific
objects in the game world.

Listing 6.3: A pure virtual function and signals in btPerceptionInfo

1 class btPerceptionInfo : public QObject
2 {
3 ...
4 public:
5 ...
6 virtual QVariant getAdjustedValue(qreal precision) const = 0;
7
8 Q_SIGNALS:
9 void infoUpdated();

10 void positionUpdated(QVector3D);
11 void radiusUpdated(qreal);
12 ...
13 };

58 Perceived Challenge



6.4. CONCLUSION

The class btPerceptionInfo is used for specifying information on a game ob-
ject. Furthermore it is to be used as a super class and thereby the subclasses
are customizable to fit the needs for that given game object. Listing 6.3 on the
facing page shows the pure virtual getAdjustedValue which must be overridden
in every subclass. It returns a value, adjusted according to the given precision.
Furthermore there are three signals, where the infoUpdate is always connected,
while the two others are optional. infoUpdate is emitted when the information
has changed and the btPerceptionInfo subclass sees fit to emit it.

Listing 6.4: The setPerceptionInfo and perceptionInfoUpdated used for con-
necting to a btPerceptionInfo and getting its value

1 ...
2 void btPerceptionAtom::setPerceptionInfo(btPerceptionInfo* newPerceptionInfo)
3 {
4 disconnect(this, SLOT(perceptionInfoUpdate()));
5 d->perceptionInfo = newPerceptionInfo;
6 connect(d->perceptionInfo, SIGNAL(infoUpdated()), this, SLOT(perceptionInfoUpdated()));
7 }
8 ...
9 void btPerceptionAtom::perceptionInfoUpdated()

10 {
11 if(d->shouldUpdate)
12 d->knowledge = d->perceptionInfo->getAdjustedValue(d->precision);
13 }
14 ...

To be able to access the information in btPerceptionInfo it should be con-
nected to a btPerceptionAtom. A btPerceptionAtom instance is added to a list
on a given btPerception instance, where each btPerceptionAtom class points at
a btPercpetionInfo, which is set using setPerceptionInfo shown in the listing
above. This function first disconnects from a btPerceptionInfo, then sets the
pointer and finally connects to the new instance.
perceptionInfoUpdated is the slot which btPerceptionInfo’s infoUpdated

is connected to. When infoUpdated is emitted, btPerceptionAtom checks if
it should update its information before updating its knowledge by through the
getAdjustedValue function on btPerceptionInfo.

6.4. Conclusion

The SMARTS Library provides a way for creating game AI, but this was without
any possibility of letting an AI character perceive the world through the SMARTS
Library. Therfore we wanted to create a perception system in SMARTS Library
which could provide that functionality.

We started out by looking at different games and how the AI perceived the game
world. The Pac-ManTM AI had exact knowledge of the game world, while QuakeTM

used a perception limit together with a line of sight and exact information about the
player, if the player is within the perception limit and visible, and the surrounding
geometry. Thief: The Dark ProjectTM used several view cones for perceiving the
world which in turn could be very expensive, while in strategy games as Age of
EmpiresTM and WarcraftTM the AI does not use line of sight or view cones, but
instead has a view on the state of world itself together with the world geometry.

After looking at how some games uses perception a perception system was de-
signed. All perceived information in the world is a perception atom which has
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to possibly fade over time, never fade or have a boolean level of precision, and is
implemented as a btPerceptionAtom class. Furthmore the btPerceptionAtom
points at the designated piece of info in the game world as a btPerceptionInfo
which has to be reimplemented to customize it to a given game object and return-
ing the correct value. Also a perception limit is used, which QuakeTM also uses,
and the ability of adding multiple view cones as done in Thief: The Dark ProjectTM,
which is implemented as a btPerceptionViewcones class.

It is also decided that the system should be as separated from btCharacter
as possible, so as not to fill this class with a lot of unnecessary functionality.
Therefore btPerceptionAtom, btPerceptionInfo and btPerceptionViewcone
are contained in a btPerception class, which also contains functionality for defin-
ing the perception limit. Thus was created a functioning general perception system
for SMARTS Library.

An important thing to note about the perception system described in this chapter is
that it is not a drop-in system which is readily usable, but rather a system where
as much boiler-plate code has been created, allowing for a smooth, consistent
implementation of perception in a game using SMARTS. What this means is that
you cannot simply add the perception system and use it in a game:

Like the behavior trees in SMARTS where it is left to the makers of games to
build the actions themselves, one must implement the methods for gathering in-
formation from the world. What the perception system then does is make it easy
to propergate this information in a consistent manner and use it in the behavior
trees. This also means that a game programmer can access the information avail-
able to a character and see directly what an AI character would have available, and
thus use this, presenting the world in an imperfect manner to the players of their
games.
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CHAPTER

7

SMARTS in Gluon

In late 2009 a very simplistic proof of concept implementation of using SMARTS
in the Gluon engine was created[16]. Based on this work it was decided that it
was possible to perform this integration of SMARTS into Gluon. This chapter thus
describes the work to create that integration.

One very important aspect of the Gluon engine (see also Appendix A on page 121)
is the ability to distribute games without compiling anything. So, to enable SMARTS
to be used properly in GluonEngine based games, expansion done per-game must
be doable through scripts. As such, a way of providing a scripting system for
extending SMARTS in Gluon Creator has to be created.

This chapter contains first a short analysis of how the existing functionality
in Gluon is implemented, followed by a design of the method by which SMARTS
is to be implemented into a similarly designed system. After this in Section 7.3
on page 63, certain interesting details of the implementation of this design are
explained.

7.1. Analysis

As described in Section A.2 on page 123, GluonEngine uses a technique called
Components when functionality is to be implemented. Since we will be building a
system in which several discrete objects will be working together to provide func-
tionality, we shall look at a similar system found in the engine already: The sound
handling components. After this we go through a quick reminder of the SMARTS
Library layout.

7.1.1. Sound in Gluon

The sound files available to a game are represented by the SoundAsset subclass
of Asset. This class loads the sound file on request, and provides the raw data to
Components in the game. The sound playing functionality itself is split into two
components:
SoundEmitter represents a single sound in the game, and is attached to Game-

Objects which are making the sound. They are connected to a SoundAsset, and
have an extent, a volume, and a fade type (which determines how the sound fades
over distance; linear, logarithmic...).
SoundListener is applied to the GameObject which represents a player char-

acter in the game. One SoundListener can be active at any one time, and the
sounds which can be heard at the position of the GameObject it is attached to are
the ones which will be played through the speakers, at appropriately faded volume
levels, according to the settings in the SoundEmitter.
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What this means is that we end up with a system, which is connected like so:
A SoundAsset can be referenced by any number of SoundEmitter. When the
SoundEmitter is told to make a sound, its volume is set according to the position
of the currently active SoundListener. The playback volume is then reset on each
update, to account for changes in the game world.

7.1.2. The SMARTS Layout

As seen in Figure 5.1 on page 39, SMARTS is laid out in such a way that a all the
behavior trees for a game are contained in a btBrain. Any number of game char-
acters, represented by the btCharacter class, can then use one of these behavior
trees as the basis for their reasoning.

The perception system described in Chapter 6 on page 51 is then contained
within the btCharacter class, and is made up of the btPerception class, which
contains perception limit information, as well as information atoms as instances of
btPerceptionAtom, which reference bits of information found scattered through-
out the world, represented by the btPerceptionInfo instances.

7.2. Design

Based on the short analysis of the sound system in Gluon, and the layout of the
SMARTS system itself, we can now describe a design for the Components and
Assets needed to allow for SMARTS to be used fully in GluonEngine based games.

The most straight forward item of the design is the assets. This has not changed
from the proof of concept implementation[16, p.50], and as such this new design
will be structured in the same way as that: One asset, BehaviorTree::Asset,
which contains a number of automatically created BehaviorTree::Tree instances,
in accordance with the trees contained in the brain.

Similarly, the representation of the character is done through the component
BehaviorTree::Character, which contains a reference to one of the assets rep-
resenting a BehaviorTree::Tree.

The perception system is where the new design will diverge. Firstly the Character
component above is amended with an instance of the btPerception class, which
must then be filled out with information about its perception limit, view cones and
related perception atoms. Only one of these is required (the perception limit), and
everything else being optional is added through the following set of new compo-
nents:

The BehaviorTree::ViewCone component represents a single view cone, and
through a set of properties contains the information described in Section 6.2.2
on page 55 (such as extent and information precision of information in the cone).
To represent multiple view cones for a single character, one simply adds multiple
instances of this Component to the GameObject the BehaviorTree::Character
is attached to. The order in which they are added to the Character defines the
hierarchy when checking for information precision.

The BehaviorTree::PerceptionAtom component represents an instance of the
btPerceptionAtom class and points to a BehaviorTree::PerceptionInfo com-
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ponent connected to a GameObject somewhere in the scene. This is done to make
the link between a character and specific pieces of perception information explicit.

7.2.1. Scriptability

Importantly, all of the above items contain only little logic of their own. Since
their core functionality is dependent on the game in which they exist, this part
cannot be generalized, and as described in Section A.2 on page 123 all the assets
which make up a game must be of a nature by which they are usable without
compiling. So, each of the items above implement functionality similar to that
found in GluonEngine::ScriptableComponet.

7.3. Implementation Details

In this section we will describe how the SMARTS Library is connected to Gluon,
and the most important implementation details are shown.

7.3.1. Registration with Gluon

We start out by describing some of the required macros for registering components
and assets. The hierarchy and and correlation between components and assets in
Gluon has been described in “Where Game AI Meets Academic AI” [16, p. 21] and
therefore we will not get into details. But to be able to register components and
assets, there are a few macros needed which will be described before continuing
with the implementation details. Not all of the classes use all macros.

REGISTER OBJECTTYPE This macro registers the class for dynamic instantiation and
creates a set standard functions which are needed if the class inherits from
GluonObject, and can not be added in the conventional way.

GLUON OBJECT This macro needs to be used in addition Q OBJECT whenever a
class inherits from GluonObject which all assets and components do.

Q INTERFACES It is necessary to tell Qt which interfaces the class implements, as
this is required when implementing plugins.

Q DECLARE METATYPE This macro has to be used twice, one for stack allocations
and one for heap allocations, such that the class can be used in a property
and as a type in Gluon.

Q EXPORT PLUGIN2 For exporting the class to the plugin, this macro is used.

Q INVOKABLE Whenever it should be possible to call a function from QMetaObject
or from QScript, this macro is necessary.

The uses of the macros described above will only be shown once as this would
be the same code in most of the classes.
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Figure 7.1.: The class diagram showing the relations of the classes in the Gluon
SMARTS Library
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7.3.2. Behavior Trees in Gluon

Behavior trees from SMARTS Library can be used in Gluon through the Asset
class which inherits from GluonEngine::Asset, as shown in figure 7.1. This
class also needs to be exposed to Gluon and thus it uses the macros from which
were just presented.

Listing 7.1: Excerpt from the Asset header file
1 ...
2 class BTCOMPONENT_EXPORT Asset : public GluonEngine::Asset
3 {
4 ...
5 GLUON_OBJECT(BehaviorTree::Asset)
6 Q_INTERFACES(GluonEngine::Asset)
7 ...
8 Q_DECLARE_METATYPE(BehaviorTree::Asset)
9 Q_DECLARE_METATYPE(BehaviorTree::Asset*)

10 ...

The listing above shows the header file to illustrate how the macros are used, if
they are used for a class. GLUON OBJECT is used to register Asset as a GluonObject
while also using the the Q INTERFACES for declaring the interface for this plugin.
At the bottom the Q DECLARE METATYPE is used twice for being able to use Asset
both as a QVariant type that can be used on the stack and on the heap.

Listing 7.2: The use of REGISTER OBJECTTYPE

1 ...
2 REGISTER_OBJECTTYPE(BehaviorTree, Asset)
3 ..

Listing 7.2 shows the registration macro for creating some of the standard func-
tions in a GluonObject.

Listing 7.3: setFile used for setting the xml created by the SMARTS Designer
1 ...
2 void Asset::setFile(const QUrl &newFile)
3 {
4 ...
5 const QObjectList& oldChildren = children();
6 QList<Tree*> newChildren;
7 for(int i = 0; i < newBrain->behaviorTreesCount(); ++i)
8 {
9 Tree* newTree = new Tree(this);

10 this->addChild(newTree);
11 newTree->setBehaviorTree(newBrain->getBehaviorTree(i));
12 newTree->setName(newTree->behaviorTree()->name());
13 newChildren.append(newTree);
14 }
15
16 // Run through all old children
17 foreach(QObject* oldChild, oldChildren)
18 {
19 Tree* theNewChild = NULL;
20 Tree* theOldChild = qobject_cast<Tree*>(oldChild);
21 // Find a tree with the same name in the new children
22 foreach(Tree* newChild, newChildren)
23 {
24 if(newChild->name() == theOldChild->name())
25 theNewChild = newChild;
26 }
27 // Tell old child that new child is the tree that should be used
28 // If no new child could be found, inform the oldChild that it should be removed
29 emit theOldChild->treeChanged(theNewChild);
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30 }
31 ...
32 GluonEngine::Asset::setFile(newFile);
33 }
34 ...

Listing 7.3 above shows Asset::setFile, which takes a file as argument. It
starts by loading the file into a btBrain from SMARTS Library, but this is not
shown in the listing. Afterwards it runs through all the behavior trees in the
btBrain and creates new instances of Tree which is container for a single behavior
tree. Next the function runs through both old and new instances of Tree to be able
to set a behavior tree which already exist but is in another instance of Tree or for
resetting and removing a nonexistent behavior tree. As the last thing the new file
is set as the current file in the super class GluonEngine::Asset.

Listing 7.4: supportedMimeTypes used for specifying the supported types of Asset
1 ...
2 const QStringList Asset::supportedMimeTypes() const
3 {
4 QStringList list;
5 list.append("application/xml");
6 return list;
7 }
8 ...

It is necessary to specify which kind of files are supported by Asset, and this is
done with the supportedMimeTypes function shown above. The function just re-
turns a list of strings which specify the types, and in this case Asset only supports
XML files.

Listing 7.5: The only place in SMARTS Library plugin where Q EXPORT PLUGIN2 is
used

1 ...
2 Q_EXPORT_PLUGIN2(gluon_plugin_asset_behaviortree, BehaviorTree::Asset)
3 ..

Listing 7.5 shows the macro Q EXPORT PLUGIN2 being used in Asset, and this is
the only place in the SMARTS Library plugin it is used.

When SMARTS Library is used separately the tree nodes are implemented in C++,
but because Gluon Creator uses scripts to let the game programmers create the
game logic, this has to be supported by the behavior tree components. To achieve
this a subclass of btNode is used, called btNodeScriptable, together with mark-
ing a part of the functions in btNode with Q INVOKEABLE to let them be used in
scripts.

Usually btNodes are instantiated during the parsing of the XML file, but the
btNodeScriptable instances are created in Gluon Creator when a game starts.

Listing 7.6: The function used when instantiating a btNodeScriptable in Gluon
Creator

1 ...
2 void btNodeScriptable::setScriptAsset(GluonEngine::Asset * asset)
3 {
4 d->script = asset;
5
6 d->script->load();
7
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8 if (d->script->data()->hasText())
9 {

10 d->engine.evaluate(d->script->data()->text(), this->className());
11
12 ...
13
14 QScriptValue btnode = d->engine.newQObject(this);
15 d->engine.globalObject().setProperty("btNode", btnode);
16 ...
17 d->runFunc = d->engine.globalObject().property("run");
18 }
19 }
20 ...

The listing above shows setScriptAsset which is called during the instanti-
ation in Gluon Creator. This functions sets the scripts and loads them by us-
ing QScriptEngine. Furthermore QScriptEngine is also used for registering the
class as a script object such that it is accessible from within the script. It uses
QScriptValue to save the run function, which in turn is called from the overrid-
den run function from the btNode.

Listing 7.7: btNodeScriptable’s run function
1 ...
2 btNode::status btNodeScriptable::run(btCharacter* self)
3 {
4 QScriptValue character = d->engine.newQObject(qobject_cast<btCharacterScriptable*>(self));
5 d->engine.globalObject().setProperty("character", character);
6
7 if(d->runFunc.isFunction())
8 {
9 d->runFunc.call();

10 if (d->engine.uncaughtException().isValid())
11 {
12 ...
13 }
14 }
15 }
16 ...

Listing 7.7 shows the run from btNodeScriptable which calls the function
runFunc as saved in a QScriptValue. Furthermore it also registers the instance
of btCharacterScriptable in the script, such that programmers would be able
to access it during execution.

7.3.3. Behavior Tree Execution in Gluon

When trying to execute a behavior tree from the SMARTS Library, an instance of
btCharacter is needed. The Character component is created for that purpose
and is essentially a wrapper on top on a btCharacter which enables setting view
cones and information on the btPerception instance which is created by the
btCharacter instance. Furthermore the use of a scripting language in Gluon, it
should also be possible to access a btCharacter instance in the scripts.

To be able to do this the Character points not to a btCharacter but instead
on a subclass of btCharacter called btCharacterScriptable. This class adds
Q INVOKEABLE on a number of virtual functions from btCharacter. By doing this
the functions are accessible in a script. It also overrides some of the functions
and redirects the calls to the Character component’s GameObject as this class
is used for querying and setting some of the values, which would been set on the
btCharacter if SMARTS Library was used without Gluon.
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The Character component is used by adding it to a Gluon GameObject.

Listing 7.8: A recursive function which is called when GluonEngine starts the game
1 ...
2 void Character::initScriptNodes(btNode* node)
3 {
4 for (int i = 0; i < node->childCount(); i++)
5 initScriptNodes(node->child(i));
6
7 if (node->type() == btNode::UnusableNodeType)
8 {
9 QList<GluonEngine::Asset*> assets = GluonEngine::Game::instance()->gameProject()->

findChildren<GluonEngine::Asset*>();
10
11 foreach(GluonEngine::Asset* asset, assets)
12 {
13 if (asset->metaObject()->className() == "ScriptAsset" && node->className() == asset

->name().left(asset->name().lastIndexOf(".")))
14 {
15 btNodeScriptable * newNode = new btNodeScriptable();
16 ...
17 for(int i = 0; i < node->childCount(); i++)
18 {
19 newNode->appendChild(node->child(i));
20 node->child(i)->setParentNode(newNode);
21 }
22
23 for(int i = 0; i < newNode->childCount(); i++)
24 {
25 node->removeChild(i);
26 }
27
28 btNode* parent = node->parentNode();
29 parent->removeChild(node);
30 parent->appendChild(newNode);
31 newNode->setParentNode(parent);
32
33 newNode->setScriptAsset(asset);
34
35 delete node;
36 }
37 }
38
39 }
40 ...
41 }
42 ...

When Gluon Creator starts the game calls the function start on the current
scene’s root GameObject which in turn calls the same function on each of the
attached components and all its child GameObjects. The listing above shows
initScriptNodes in Character, which is called from the component’s start
function. The function is recursive and checks if btNode could be scriptable.
If this is the case it creates a btNodeScriptable instance and copies all of the
information from the btNode, and then moving both parent and children to the
btNodeScriptable. Then it sets the script and deletes the old node. This is done
throughout the behavior tree.

Listing 7.9: The Character::think function
1 ...
2 bool Character::think()
3 {
4 ...
5 if (tree())
6 {
7 if (tree()->behaviorTree())
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8 {
9 d->self->think();

10 ...
11 }
12 else
13 ...
14 }
15 else
16 ...
17 }
18 ...

Listing 7.9 on the preceding page shows the think which in turn calls the think
function of the btCharacterScriptable which runs the scheduler.

7.3.4. Perception in Gluon

The view cone integration of the perception system in Gluon is done with the
class ViewCone which is just a wrapper on top of btPerceptionViewcone. It
enables Gluon Creator to set the relevant values on btPerceptionViewcone. The
same goes for the class PerceptionAtom which wraps btPerceptionAtom but also
points at a PerceptionInfo as the design specifies in Chapter 6 on page 51

Both btPerceptionViewcone and PerceptionAtom will look for the Character
component, when they are added to a GameObject and if they can not find it,
they will remove themselves from the GameObject. If they find it, they will add
themselves to the Character component’s instance of btCharacterScriptable

btPerceptionInfo specifies when a btPerceptionAtom should update its infor-
mation from the attached btPerceptionInfo. Consequently it should possible to
trigger this from the scripting which GluonEngine uses. To allow for this a subclass
of btPerceptionInfo is used. This class is called btPerceptionInfoScriptable.
This class basically only overrides getAdjustedValue which calls a correspond-
ing function on the PerceptionInfo that is pointing to it. It is not the class
btPerceptionInfoScriptable which is pointing at the actual script but rather
PerceptionInfo which contains the script and loads it, using QScriptEngine
and QScriptValue as btNodeScriptable.

Listing 7.10: Calling the corresponding getAdjustedValue in the script.
1 ...
2 QVariant PerceptionInfo::getAdjustedValue(qreal precision)
3 {
4 if(d->getAdjustedValueFunc.isFunction())
5 {
6 QScriptValue returnVal = d->getAdjustedValueFunc.call(QScriptValue(), QScriptValueList

() << precision);
7 if (d->engine.uncaughtException().isValid())
8 {
9 debug(d->engine.uncaughtException().toString() + ": " + d->engine.

uncaughtExceptionBacktrace().join(" "));
10 return QVariant();
11 }
12 else
13 return returnVal.toVariant();
14 }
15 }
16 ...
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Listing 7.10 on the previous page shows the code for calling the script function
getAdjustedValue, which first checks if it is a function or if it is set, then runs it
with the correct parameter and finally returns the results if the call succeeds.

7.4. Conclusion

We wanted to integrate the SMARTS Library into Gluon together with the new
perception system. To do this we use Gluon’s plugin system to create plugins
which function as wrappers on top of the SMARTS Library implementation. Fur-
thermore, the three classes btNodeScriptable, btCharacterScriptable and
btPerceptionInfoScriptable were created to allow programmers to use the
scripting system in Gluon, and through this create scripts for executing func-
tionality in SMARTS Library without having to create C++ classes and just use
GluonCreator, and through that GluonEngine, for the implementation of behavior
tree leaf nodes.
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Part III

The Quantum Sea

The Quantum Sea is a simple game of smashing isotopes
of various elements from the periodic table together and
scoring many, many points in the process.
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CHAPTER

8

Introducing The Quantum Sea

Now that we in Part II have constructed the SMARTS engine and its perception
system, and through Part III got it working inside GluonEngine, we can finally get
to Part IV, wherein we will construct the game through which we in this and Part
V will be evaluating the methods for behavior tree construction and evaluation
presented in Part I.

Developed over the course of the new year holiday between 2009 and 2010, the
concept which is presented under here is The Quantum Sea. The game concept
itself is based on the graphical representations of particle collision events as cre-
ated by the scientists working at particle colliders around the world. The visuals
here have inspired a game in which the action of colliding particles has turned into
a personally guided fight to create the most high-energy collisions and that way
score points.

Appendix B on page 129 shows the design sheets created for the game. The
design is explored in further depth over the course of this chapter, where the con-
cept is fleshed out further, and finally implemented. We will not construct the full
design for the game, but rather build the rules for doing so, and then create one
example to show the procedure, and a prototype through which evaluation will be
carried out.

8.1. Game Design

With the base game elements set down in the design sheets in mind, we can de-
scribe how the game progression works: Rather than being a simple progression
through a linear set of levels, the design of The Quantum Sea suggests a progres-
sion system which is tree-like.

The reasoning behind this observation is the level design described in the design,
which is based on experimentation. An old adage goes that the answer to one
question will open up new questions. Thus, from one base experiment, it is likely
that while one item was under investigation multiple new questions would arise.
And so, the progression becomes a tree.

Representing this in the game in a way which makes it possible to select and
read information about each experiment with as few controls as possible is done
in the manner described on the second design sheet. The specific item where this
is described can be seen in Figure 8.1 on the next page.

As each level is an experiment based on the collision of items, we can set down a
series of rules for how these collisions are encouraged by the player of the game.
Later, in Chapter 9 on page 77, this information will be used to create the charac-
ters in the game.

A character in the game has an amount of energy which can be applied to the
particles to achieve two things: Increase the speed of the particle, and change the
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Figure 8.1.: A sketch showing the experiment selection screen

spin of the particle. The amount of energy a player has slowly regenerates over
time, the particle’s spin will return to the spin the particle started out with over
time, and its speed will slowly reduce to zero.

8.2. A Small Level

As described in Section 8.1 levels in The Quantum Sea are all designed as experi-
ments. Because of this, designing the level we will use for our testing is done in the
same manner. To avoid an entirely trivial level setup such as the first experiment
in the game, based on a collision of hydrogen against hydrogen, we create a hy-
pothetical experiment some distance into the game progression. We further ignore
the hints in the game design that there would be power-ups and further abilities
(such as time adjustment and the like).

The level design seen below is the description which will be used in the game
when presenting the level to the player. It includes both the basic premise for the
level, as well as a short description of the objective, and a hint designed to indicate
a small piece of help to the player, as opposed to being a strict instruction.

8.2.1. Level Design

Experiment SEA-42 - Carbon-14 vs. Nitrogen-14
Knowing from observation that Carbon-14 decays to Nitrogen-14, we

wish to investigate what would result from a collision between the two.
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Figure 8.2.: The layout of the level

As such, the experimental setup consists of one Carbon-14 atom and
one Nitrogen-14 atom in a vacuum and at rest.

Your objective is to investigate the impact of a collision between the
two atoms, and further investigate the results of collisions between those
results.

Hint: Speed is relative.

Multiplier levels

Energy remaining 100% 85% 70% 50% Below 50%
Multiplier 5X 4X 3X 2X 1X

Level Layout

The layout of levels in The Quantum Sea is made up of particle positions and their
initial velocities. As we have described this level as starting with the two particles
Carbon-14 and Nitrogen-14 standing still, we define the initial layout of the level
as can be seen in Figure 8.2.

One of the objectives for this level is thus to not simply smack the particles
together at the first opportunity (that is, to simply increase the speed of the particle
you are attached to at the beginning) as this will not yield the highest number of
points.

The way in which specific details for the particles is defined is discussed in
Chapter 9 on page 77, and the data for the various particles can then be found
in Appendix C on page 135.

8.3. Conclusion

Over this chapter, an introduction to the game The Quantum Sea has been con-
ducted, and various over-view elements of the game have been presented, includ-
ing how the level design and game progression works. This base allows for specifics
to be explored further in depth in the following chapters.
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9

Particle Perception

The Quantum Sea has two distinct types of characters: Particles and Players. The
first is the particles as used in the game, the collidable items. The second, the
Player, is the abstract character we use to describe the player of the game. This
is relevant to us, as we wish to attempt to describe a character able to play The
Quantum Sea through use of behavior trees, and then evaluate this character
using the methods described in Part I.

9.1. Particles

The various particles in The Quantum Sea, as mentioned in the previous chapter,
function differently in a number of aspects:

• Particles give different points

• Particles yield different other particles when smashed

• Particles see the world differently

In particular the last of these items is important when focusing on SMARTS.
While the other two make the game itself playable, the varying perception of the
particles is more interesting to us. As such, in this chapter we will present the
values for the first two, and go into more depth with the way in which the different
particles view the world.

9.1.1. Defining the Particles

For the simple reason that The Quantum Sea is a game, and this project not being
created under the Faculty of Particle Physics or even supposed to be edutainment,
we do not aspire to create a game system which is true to real-world physics.
However, to assist with the creation of game data, we still base parts of the logic on
this. As such, the basic rules of the elements in the game are defined as follows:

• Smashing elements yield points, with a high speed and head-on collision
yielding maximum points and slow speed and rear collision yielding no points

• Smashable elements:

– Isotopes of elements found in the Periodic Table of Elements

– Particles which make up the isotopes

– Sub-particles which make up the particles (such as quarks)

• When isotopes smash, they yield various energies (x-rays, gamma rays and
so on), sub-particles, particles and isotopes
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• When particles smash, they yield various energies and sub-particles

• When sub-particles smash, they yield various energies

• Isotopes are provided with a fixed life span in the game to simulate half-life
properties - if an isotope splits due to its half-life time limit being reached
(decay), no points are given to the player

Varying classes of elements provide different information about the world, and
as such the following does not list all the isotopes in the Periodic Table of Elements
but rather defines what an isotope will yield, according to its various values.

The number of points yielded by any item in a collision event is equal to

1 + 2n∗φ∗K + E

where n is the weight of the item, φ is the normalized angle of impact deviation
from 180 degrees divided by 180 (that is, a number between 0 and 1), and K is
the amount of kinetic energy which is released by the impact. What this means, in
essence, is that any rays created will always yield 1 point, as they are pure energy
and have no weight, and that a high-speed collision will yield a higher number of
points than a low-speed one, and similarly that a head-on collision will yield the
most points and that a direct-from-the-rear collision will yield no points.

To create a suitable approximation of the K value in the points formula above,
we define it as the velocity of a hypothetical single item resulting from a perfectly
inelastic collision[14] between the two colliding items. As such, the velocity of this
new item is defined as

vf = m1v1+m2v2
m1+m2

where mn is the mass of item n and vn is the velocity of the item n. This formula
functions in a manner such that it will release an amount of kinetic energy accord-
ing to how much is left over from the two items in their natural state. The kinetic
energy of an object in motion is defined as

Ek = 1
2mv

2

With this information, we can now define the amount of kinetic energy K as
follows:

K = Ek1 + Ek2 − vf

The values vf and K are further used to define the amount of new items created.
Each item in the game field is created with a number of collision event levels de-
fined, which describe which new items will be spawned at a collision event with a
certain kinetic energy release K. They are spawned in a manner consistent with
the velocity of the impact, meaning that a head-on collision will yield a circular
spread of spawned items, and a collision directly from the rear will lead to no
spread, spawning items all with the same velocity vector (straight ahead). Items
are spawned in the order they are defined in the collision event level definition, and
distributed evenly across the spread.
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Figure 9.1.: Particle information sheet for the isotope Uranium-235

Two Sample Items

The following contains two examples of the definitions described above, and in the
previous chapter. Note specifically how the total potential energy of each collision
event level definition in the item is the same. This means that the energy contained
in the system is stable, which is one of the basic assumptions in physics. Note also
that the definitions are limited as a percentage rather than an absolute energy
level. This is done to attempt to make it easier for the designer to create a larger
spectrum of items.

We also define, at the same time, the perception values for the items.

To further ease the generation of this data the various isotopes, of which there is a
very large number, can be generated automatically by following this procedure:

Initial spin The spin of the particle, multiplied by ten. This number is the number
of degrees of rotation per planck time unit.

Mass Simply the mass in unified atomic mass units (u).

Life time Half-life in minutes, and that number then taken as represented in planck
units. This is unlike what happens in real particle physics, but makes for a
more interesting game, as highly radioactive items will decay at such a speed
that it becomes difficult to manage1.

1Note in the example below that it seems a very long time, but note also that while Uranium-235 is
considered highly radioactive, its half life of 703,800,000 years is nothing compared to for example
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Decays to The item which the isotope will decay to is as defined by physics, and is
always the first collision event level.

This of course only defines the particle itself, and not its various collision event
levels. However, it does provide a starting point.

As the smashable items are essentially the same in respect to how the definitions
look, we show one shasmable item, and one non-smashable item. The uranium
isotope uranium-235 (or uranium II) can be seen in Figure 9.1 on the preceding
page, and the gamma ray can be seen in the table below (since it is a ray there is not
enough information to fill out a particle information sheet). Further items as used
in the implemented game can be seen in Appendix C on page 135. All the values
here are based on the Table of Nucleotides found at http://atom.kaeri.re.kr/.

Gamma Ray

Initial spin Spin deviation Mass Life time
0 ◦/tP 10 ◦/tP 1u 10tP

Note that a ray does not in fact have a mass. We use it here as a way of keeping
point calculations sane.

9.2. Player

The player character in The Quantum Sea is a model of the human player of the
game, through which we explore various possible angles of attack. What this
means is that to allow us to build this character, we follow the methodology for
building behavior trees described in Where Game AI Meets Academic AI[16, pp.
12], a method which is inspired by The Behavior-Oriented Design of Modular Agent
Intelligence[6] and which functions as follows:

1. Specify the high level behavior of the character, i.e. what should it do.

2. Find possible activities and specify them as sequences of actions.

3. Use the sequences to identify all the low-level actions needed.

4. Identify conditions which need to be fulfilled to activate actions and goals,
these provide the division into behaviors.

5. Identify and order goals that the character needs.

6. Select one of the behaviors to implement.

As such, the following is a run-through of the first five. The last item, implemen-
tation, is pushed to Chapter 10 on page 89, in which is described how the game is
built using Gluon Creator and SMARTS Designer.

Rutherfordium-263, which has a half life of ten minutes, which then becomes an extremely short
time in the game
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9.2.1. High Level Behavior

The goal of the player is to attempt to smash two of the particles in the level together
at the highest possible speed, and should usually try to smash the two heaviest
particles particles together. This can be achieved using a number of different tac-
tics, and as such the high level behavior is the description of these tactics. For
reasons of simplicity we describe three tactics for the player: An aggressive tactic,
an exploring tactic, and a cautious tactic.

Aggressive Directly attack the nearest item by setting optimal spin and speed to
achieve a collision as soon as possible. Do not switch items until you have
achieved a collision (at which time it is done automatically by the game)

Exploring Attempt to see larger parts of the level by spinning out of the way of
other particles until the particle reaches high speed, and then attempt to hit
the fastest other moving particle nearby from the front

Cautious Switch items every time you have adjusted speed and spin, applying be-
tween 5% and 10% of your initial energy to each of these. When energy is
exhausted, wait until energy is fully recharged before resuming

9.2.2. Possible Activities

We now describe the activities indicated by these tactics:

Activities in the Aggressive Tactic :

• Find nearest and heaviest visible particle

• Attempt to hit the discovered particle

Activities in the Exploring Tactic :

• Avoid visible particles

• Increase speed continuously and slowly

• Adjust spin by some amount at an interval

• Upon reaching a certain speed, attempt to hit the heaviest visible particle

Activities in the Cautious Tactic :

• Adjust speed and spin lightly

• Switch to the nearest visible particle after one spin and speed adjustment

• Wait while energy replenishes when not enough energy is available to
perform an activity

9.2.3. Low-level Actions

In the previous section, the sequences of actions were described superficially. In
this section they are explored in further depth, describing each activity as se-
quences of actions.

The most common action for all three tactics is Find nearest visible particle,
which can be split out into a number of possible actions:
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• In case there are particles currently in your field of view, simply choose the
heaviest particle

• If no particles are found like this, add a small amount of spin and wait a bit

• If this does not yield a result within a certain amount of time, add speed and
wait a bit

• Repeat cycle until a particle is discovered

After this the speed and spin adjustment action is common as well, and can be
split into the following actions:

• Apply energy to speed

• Apply energy to positive spin

• Apply energy to negative spin

This action is conceptually tightly bound to the avoidance action, but that
action requires a different approach:

• Find required spin adjustment

• Apply energy to spin until spin adjustment is reached

As clearing the level of collidable items is the eventual goal of the game, attempt-
ing to hit a particle of which you are aware is often the immediate goal for the
character:

• Find distance to particle, and particle’s current velocity

• Find amount of energy required to adjust speed and spin to hit particle

• Apply energy to speed and spin to impact goal particle if amount of energy is
available

• Otherwise shift to next potential target

9.2.4. Division Into Behaviors

We have now defined the actions and overall strategies, and now we want to defines
behaviors and behavior trees from these definitions. For each tactic the required
behaviors are defined and reused if these are defined for one of the other tactics.

We start off by defining three basis behaviors which are used throughout the dif-
ferent activities:

Apply Speed Applying energy as speed to a particle

Apply Spin Applying energy as spin to a particle either as positive or negative spin
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Figure 9.2.: The behavior for finding the nearest and heaviest visible particle

Figure 9.3.: The behavior for attempting to hit a particle

These three behaviors will act as the cornerstones of the rest of the behaviors.
The next step is to define the rest of the behaviors together with any new smaller
behaviors if needed.

We will start off by defining the behaviors for an aggressive player. Figure 9.2
shows the behavior for Find visible, heaviest and, nearest particle. It is a parallel
with three different actions run in parallel and has three actions.

Nearest and Heaviest Visible Checks if the if there are any particles visible and if
this is the case it selects the nearest and heaviest of these and terminates

Apply Spin Defined above. A decorator ensures that this action is only called at a
given time interval

Apply Speed Defined above. A decorator ensures that this action is only called at
a given time interval

If the Nearest and Heaviest Visible action terminates, the parallel also termi-
nates.

Attempt to hit the discovered particle is shown on Figure 9.3 shows the behav-
ior for this action.

The behavior has six different actions used for calculating and hitting the parti-
cle.
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Figure 9.4.: The behavior for finding the nearest visible particle

Distance Calculates the distance to the particle

Velocity Finds the particle’s velocity

Required Impact Spin Calculates the required spin for impact

Required Impact Speed Calculates the required speed for impact

Apply Speed Applying speed to the currently controlled particle. It has a deco-
rator which prevents execution if there is not enough energy, and will stop
execution if the targeted speed has been reached.

Apply Spin Applying spin to the currently controlled particle (either positive or neg-
ative spin). It has a decorator which prevents execution if there is not enough
energy, and will stop execution if the targeted spin has been reached.

Now we define the different behaviors which a exploring player will use when
player the game. Instead of finding the nearest, heaviest and visible particle, it
should just find the nearest visible particle, so it can be avoided. This behavior is
shown in Figure 9.4, is called Find nearest visible particle and consists of three
actions:

Visible and Nearest Checks if the if there are any particles visible and if this is the
case it selects the nearest particle and terminates

Apply Spin Defined above. A decorator insures that the a this action is only called
at a given time interval

Apply Speed Defined above. A decorator insures that the a this action is only
called at a given time interval

The Avoid visible particles behavior is shown in Figure 9.5 on the facing page,
and consists of a previously defined behavior and two other behaviors:

Find nearest visible particle A behavior that is defined above

Required Avoid Spin Calculates the required spin for avoiding impact

Apply Spin Applying spin the current particle as positive or negative spin
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Figure 9.5.: The behavior for avoiding a particle

Figure 9.6.: The behavior for switching particle

The Cautions tactic only has one behavior which needs definition, and this is
shown in Figure 9.6. The behavior contains the previous Find nearest and visible
particle and one other behavior for switching particle:

Find visible, heaviest and, nearest particle A behavior which was defined under the
Aggressive tactic

Switch Switches to the nearest particle

9.2.5. Goal Identification and Ordering

Now that the behaviors used by the three different tactics have been defined it is
possible to create the behavior trees for each tactic.

Aggressive Tactic

The Aggressive tactic will always try to collide a particle to the nearest and heav-
iest particle, which renders the behavior tree in Figure 9.7 on the following page.

It shows that this tactic will immediately search for the nearest and heaviest
visible particle and try to hit it. Because of this it will never switch to a new
particle, but will continue repeating the steps on the next automatically selected
particle because of the selector.
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Figure 9.7.: The behavior tree for the Aggressive tactic

Figure 9.8.: The behavior tree for the Exploration tactic

Exploration Tactic

The Exploration tactic is a bit different as it will search through the surrounding
area before attempting to make a collision.

Figure 9.8 shows the behavior tree for this tactic. The root is a selector where
the tactic first avoids the nearest particle, then applies speed and if a given time
interval has been reach also applies spin to the particle. Finally if the particle has
reached a certain speed then the Exploration tactic runs the aggressive behavior
tree for impacting two paricles.

Cautious Tactic

This tactic is hesitant in its reaction to the game world. Figure 9.9 on the facing
page illustrates the behavior tree for this tactic.

This tactic uses a selector as the root node, and will always switch between two
particles to start with. Afterwards it will run the exploration behavior tree, which
will avoid any collisions and add speed and maybe spin to a particle. If the speed
limit has not been reached, the Cautious tactic will make another switch and so
forth. If at any point a controlled particle reaches a certain amount of speed it will
try to collide this particle with another.
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Figure 9.9.: The behavior tree for the Cautious tactic

Figure 9.10.: The behavior tree for the player

The Player Behavior Tree

Now we put all of the behavior trees together to form the behavior tree for the
player. The root node is a selector and we have chosen that the player will stick to
a selected tactic for the duration of the game.

Figure 9.10 shows this behavior tree, where each branch from the root node has
a decorator. This decorator insures that the player will stick to the chosen tactic,
by never letting the decorator return to the root, in stead continuing the execution
of the sub behavior tree.

9.3. Conclusion

Through the preceding chapter has been created a system by which the particles
in The Quantum Sea can be defined, and a number of them constructed. In it has
also been designed the behavior trees representing a player of the game with three
varying tactics. This all allows for the construction of the game itself.
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Figure 9.11.: A screenshot of our The Quantum Sea prototype
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CHAPTER

10

Quantum Construction

Over the course of the two preceding chapters, we have described the various parts
of the game design for The Quantum Sea. In the chapters before that we described
how GluonEngine and SMARTS each work, and how they work together on a tech-
nical level. This chapter, then, is a description of how a game is constructed using
these tools. We do not intend to show how one uses Gluon Creator in depth as
that would be out of scope for this report, but rather focus on the non trivial parts
of the game construction.

10.1. Level Building

One wish for level construction for The Quantum Sea is the ability for level design-
ers to simply drop a particle into the scene, and then have the game pick up on
these particles and react correctly to them when the level is started. That is: Drop
in a number of particles, and mark one particle as the particle the player controls
when the level starts.

10.1.1. The Anatomy of a Particle

With this in mind, the first item to be constructed is the self-contained particle. The
particle contains the information as described by the particle information sheets
described in Section 9.1.1 on page 77 and use the prefab system in Gluon to allow
level designers to construct each particle, and then simply re-use them in the
levels, and in the various other particles’ impact levels.

Listing 10.1: The ParticleInfo script’s properties
1 function start()
2 {
3 Component.particleName = "";
4 Component.collidable = true;
5 Component.initialSpin = 0;
6 Component.metaInfo().setPropertyRange("initialSpin", -360, 360);
7 Component.spinDeviation = 0;
8 Component.metaInfo().setPropertyRange("spinDeviation", -360, 360);
9 Component.mass = 0;

10 Component.lifeTime = 0;
11 Component.metaInfo().setPropertyRange("lifeTime", 0, quint.max());
12 Component.perceptionLimit = 0;
13 Component.metaInfo().setPropertyRange("perceptionLimit", 0, quint.max());
14 // ...
15 }

Conspicuous by their absense here are properties for the impact levels and view
cones. This, of course, is because they are constructed using a separate script,
where one is added per item. The view cones are simply the SMARTS compo-
nents as described in Section 6.2.2 on page 55, while the impact levels are simple
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information containers, and constructed as scripts which contains the following
property definitions:

Listing 10.2: The ParticleImpactLevel script’s properties
1 function start()
2 {
3 Component.maxEnergyLevel = 0;
4 Component.metaInfo().setPropertyRange("maxEnergyLevel", 0, 100);
5 Component.leftOverEnergy = 0;
6 Component.metaInfo().setPropertyRange("leftOverEnergy", 0, quint.max());
7 Component.spawnCounts = new Array();
8 Component.spawnItems = new Array();
9 }

The two first properties are straight forward, but the last two demand a little
explanation. The reason we define them like so is that we cannot define arbitrary
data structures in Gluon, and as such we define the items to be spawned from this
impact level in two gos:

Firstly the number of items to be spawned, and secondly the items to spawn that
many of. This does require some handling of the items when using them, but this
is relatively trivial and shall not be explored further here.

With this in place we can now describe the structure of a particle prefab. Shortly:
Prefabs are created as though you were constructing a normal GameObject in
your Scene. When a GameObject is dragged into the Asset tree, it becomes a
Prefab, and the GameObject in the Scene becomes an instance of that Prefab (see
Appendix A on page 121 for further information). So with that in mind a particle
prefab, exemplified by the Nitrogen-14 isotope, is structured as follows:

• Nitrogen-14

– ParticleInfo

– ParticleMotion

– ParticleImpactLevel 1

– ParticleImpactLevel 2

– ViewCone 1

– ViewCone 2

– ViewCone 3

An important part of the workflow when dealing with Prefabs is the way in which
you can change values, but not the basic structure. What this means is that we
need to have the view cones and particle impact levels that we might need in the
prefab. The only impact of this is on memory since disabling Components makes
them have no impact on the performance of the game.

10.1.2. Putting Together Levels

The construction of a level is thus simply a matter of taking a number of these
prefabs, and dragging then into the scene, and finally choosing which of the items
will then be used as the initially selected particle, which is done by selecting it in
the PlayerManager script.
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This, then, would be the ideal world solution. However, as we have run into
problems in creating this system (Gluon did not at time of writing have working
prefabs) what had to be done was to create a system which would allow a particle
to copy itself and then tell the children what they should transform into. This
system, while convoluted and long-winded, with the transformation function for
only the few particles needed in the prototype created here reaching 250 lines of
code which looks mostly as in the listing below, has turned out to function for the
most part acceptably.

Listing 10.3: A snippet from the setParticleByName(name) function
1 // ...
2 switch(name)
3 {
4 case "Nitrogen-14":
5 color = new QColor(255, 255, 0);
6 initialSpin = 10;
7 spinDeviation = 0;
8 mass = 14.0030740;
9 lifeTime = maxParticleLifetime;

10 impactLevels = new Array(
11 new Array(70 , new Array(1, "Berylium-10", 3, "Proton", 1, "Neutron"), 0),
12 new Array(100 , new Array(1, "Berylium-10", 2, "Proton", 2, "Up-quark", 1, "Down-

quark"), 0));
13 perceptionLimit = 25;
14 viewConeInfo = new Array(
15 new Array(1, 0, 180, 25, 0.5),
16 new Array(2, 0, 90, 20, 1.0),
17 new Array(3, 180, 90, 10, 0.7));
18 break;
19 // ...

Using this function the PlayerManager script can be used to allow for levels to
be constructed in an almost identical manner to the intended, meaning that in
stead of adding the prefabs to a level the level designer copies the GameObjects
representing particles directly, and sets their names to that of one of the items
in the switch statement above. This is then handled by the PlayerManager which
informs the particles to convert themselves to the particle by that name.

10.2. Behavior Trees

The behavior trees for which we described the design in the latter half of the previ-
ous chapter were constructed so far simply as conceptual constructs. This section
is an explanation of how they are implemented for use in the game. However,
rather than explain at length how each tree is built using SMARTS Designer, we in
stead believe it will be of higher value to describe how one works with the tool in a
more general manner with examples provided by The Quantum Sea.

10.2.1. Working with SMARTS Designer

When constructing the trees themselves, SMARTS Designer[16] allows the game
designer to build the tree using the same methods as when sketching them out on
a blackboard or a piece of paper as we did in the previous steps in the method.
While it only shows the tree using a standard tree view, it in essence shows the
logic from left to right rather than from the top and down, and as such there is
little real difference between the two ways of visualizing the trees.
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Figure 10.1.: SMARTS Designer working on the Exploration tree

Figure 10.1 shows the brain for The Quantum Sea as it looks in the program with
the behavior tree representing the Exploration tactic selected. On the right side is
a list of all the available components for your behavior trees, the middle shows the
currently active tree (change which is the active by clicking on the button beside
the tree’s name), and the right side shows the various options for the currently
selected node in the tree.

Decorators, being somewhat of a special case in behavior trees, are not shown
directly in the tree, but rather they are shown in the tooltip when hovering over
an item - in the case of the screenshot the Apply Spin node. This also means that
when selecting an item in the tree, any decorators attached to the node will be
shown in the properties panel along with the node they are attached to.

The following is a description of the work flow which is employed when con-
structing such a tree. Rather than simply assuming that the method has been
followed and we have already got a design, we assume here that this is what would
be done in steps 4 and 5, and that we as such show how the program supports
the construction work flow in the method, once the initial analysis work has been
done.

SMARTS Designer’s base functionality is essentially drag’n’drop based: To build
a behavior tree one simply drags the items from the tree view containing available
nodes into the view containing the behavior tree itself. In the case of any behav-
iors which need values changed these can then be manipulated by selecting the
behavior in question and then changing those values in the Properties view.

Adding Behaviors

Creating the many behaviors for a behavior tree is done by right-clicking in the
Available Nodes pane on the appropriate category (action, composite or decorator)
and then selecting New Node Type in the context menu, which will add a node
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Figure 10.2.: Editing the Time Interval decorator’s settings

named New Node Type at the end of the selected sub-tree. Then double-click on
the newly added node to open up the node editing dialog.

In this dialog you can set the various parameters relevant to the node you wish
to add, as seen in Figure 10.2. While name and description are relatively obvious,
and simply human-readable information used in the editor, the Classname and
Properties items are less obvious: Classname is the name of the class which rep-
resents this node type in the game code, and Properties are those properties which
that class has available for controlling the way it functions.

As an example of this we have here the Time Interval decorator which will ensure
that the behavior it is attached to is not run more often than at a certain interval,
as defined by the integer property called interval. The class which represents this
decorator in the game code is TimeInterval and in the next section we describe
how these are then defined.

10.2.2. Creating the Actions

The final step in the method (from Section 9.2 on page 80), ”Select one of the
behaviors to implement.” is, in fact, an iterative step. What this step covers is the
creation of the logic in the game which is not already supported by SMARTS. In
our case this means implementing functionality through the use of the scripting
system described in Chapter 7 on page 61.

The scripts created for the SMARTS components are built in the same way any
other script for Gluon is, except for the fact that in stead of having the initialize,
start, update, draw, stop and cleanup functions, they have one single function:
The run function.

Importantly, rather than having the Character passed to them through the run
function’s parameter this is done in a style similar to Gluon’s other scripted ob-
jects, by setting it as a special object on the script’s engine. This allows the script
writer to use the object Character in their code. Similarly, the Node is available
in the same way.

As can be seen in the following snippet, which is the entirety of the code for
the TimeInterval node type, this has allowed for the creation of pleasant, readable
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code:

Listing 10.4: The run function from the TimeInterval script
1 function run()
2 {
3 if(Character.time > Node.interval)
4 {
5 Character.useTimeEnergy = true;
6 Character.timeEnergy = Character.time;
7 Character.time = 0;
8 Node.runChild(0);
9 Node.status = 3;

10 }
11 else
12 {
13 Character.useTimeEnergy = false;
14 Character.time += Component.time;
15 Node.status = 2;
16 }
17 }

10.3. Conclusion

Through this chapter we have described parts of the implementation of The Quan-
tum Sea relevant to SMARTS. What this means is that we have not gone into
any serious depth with the game logic itself, which while not trivial is outside the
scope of this project. In stead the implementation of the behavior trees designed
in the previous chapter has been explained, and hints to the game implementa-
tion required for the understanding of the behavior trees have been provided. A
screenshot of what the game looks like in the incarnation which existed when the
prototype implementation was concluded can be seen in Figure 9.11 on page 88.
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Part IV

Evaluation

A method is only a hypothesis without proof, and the meth-
ods proposed in this report are so far untested. We now
alleviate that problem by performing evaluation of them.
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CHAPTER

11

Evaluation

Over the previous chapters we have laid the ground work for functionality and
methodology for use in both defining, using and evaluating behavior trees and
their applicability in various situations. While their use has been applied over the
last couple of chapters, the evaluation method described in Chapter 4 on page 13
has yet to be evaluated past the proof of its mathematical correctness.

We now wish to conduct tests to evaluate the method on data which is both
simple and at the same time reflects a real world situation. Towards this end we
could conduct a data gathering exercise on the behavior trees designed for The
Quantum Sea in Section 9.2 on page 80. These behavior trees are too general for
testing and contains too much uncertainty, instead we are focusing on a single
scenario where a player is trying to collide two particles.

11.1. Testing Procedure

We will perform three different tests to be able to evaluate our challenge and be-
havior diversity metrics against each other and those that were used in ”Where
Game AI Meets Academic AI”[16]. We will test the three different ways of optimiz-
ing behavior trees described in subsection 4.3.3 on page 31 where we will run an
equal number of tests for each method and then compare the results and evaluate
the methods to determine the best method for optimizing behavior trees.

We will use The Quantum Sea for testing the methods using a more focused set
of behavior trees, where we will conduct three different tests for each method, first
where k1 and k2 is equal, then where first where k1 = 0.75 and k2 = 0.25 and lastly
first where k1 = 0.25 and k2 = 0.75. We perform the tests by running 10 calculations
for each method using The Quantum Sea , with data from 1000 runs, and between
each calculation the optimal weights are calculated with the given method and
inserted into the behavior tree before the next 1000 runs.

The behavior trees for The Quantum Sea contains very special structures e.g in-
finite loops, parallels and decorators which could create very special results during
the usage and collapsing of the behavior tree. Therefore we will test the methods
on a constructed example ending up with a comparison of how the tests went and
which methods are best suitable for optimizing behavior trees. Note that the global
tests will not make any use of links, as these still are not accounted for in the
calculations.

11.1.1. The Quantum Sea

We have designed and created new behavior trees for the collision scenario, as
the player would have different strategies for trying to hit another particle. The
creation of these behavior trees also were done using the method described in
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Figure 11.1.: The behavior tree for selecting the particle speed

Figure 11.2.: The behavior tree for selecting the spin direction of the particle

section 9.2 on page 80. We start by describing some of the subtrees which are
used throughout the bigger behavior trees.

Figure 11.1 shows the Speed behavior tree which selects the speed for the cur-
rent particle, and has four different speeds that can be chosen, Keep Speed, Low
Speed, Med Speed and, High Speed. The root node is a probability selector with
a probability of 0.25 of selecting each speed.

Before applying spin the the particle it is necessary for selecting in which direc-
tion the spin should be applied. Figure 11.2 shows the behavior tree for selecting
the spin direction, where the root again is a probability selector and each child has
a probability of 0.5 of being selected.

Now that we have defined some of the often used behaviors we can define the
strategies.

The Direct strategy is shown on figure 11.3 on the facing page, The root is a
sequence such that the strategy first selects the speed for the particle and then
runs a parallel for trying to hit the other particle. The parallel will calculate how to
hit the other particle meanwhile there is a timeout before the parallel fails.

The behavior tree for trying to hit the other particle through an arc is shown on
figure 11.4 on the next page. As before the root behavior is a sequence which first
will select the spin direction. Then it will select the speed it wants to travel, and
at last it will start a parallel for trying to hit the other particle. The parallel will
calculate the required spin impact in a giving interval, apply the necessary spin
and speed and a timeout will terminate the parallel, such that a new strategy can
be chosen for execution.

Figure 11.5 on page 100 shows the last strategy for trying to hit a through a
outgoing spiral. The root is a parallel which runs three children at the same time.
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Figure 11.3.: The behavior tree for a direct approach to hit the particle

Figure 11.4.: The behavior tree for trying to hit the particle with an arc
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Figure 11.5.: The behavior tree for doing a spiral outwards attempting to hit any
particle in the way

Figure 11.6.: The behavior tree for deciding which strategy to use for trying to hit
a particle

The first is a sequence which chooses spin direction, sets the spin, applies the
spin and lastly increases the speed slowly. The two other children are used for
termination of the parallel checks if the particle is out of bounce of the level or if a
certain time has passed before terminating the parallel.

Figure shows the root behavior tree for selecting a strategy, the Root node is
probability selector and has three different strategies, Direct, Arc and, Spiral,
where each strategy has probability of 0.33 of being selected.

Now that we have described the behavior trees used for testing, it is possible to use
these trees for testing our methods.

11.1.2. Constructed Example

The constructed example usage the simple building blocks from section 2 on page 5
which means that parallels and decorators are not used in the behavior tree. Fig-
ure 11.7 on the facing page shows the behavior tree used for the constructed
example.
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Figure 11.7.: The behavior tree of the constructed example

The behavior tree defines the attack possibilities of an AI in a First Person Shooter
game. It has the possibility to either Direct Attack which selects the which kind
of attack should be performed or to use Sneak Attack. During the Sneak Attack
the AI first either moves around the opponent or stays put in the safety of cover,
and then uses Direct Attack for selecting the attack type.

Every selector on the figure is a probability selector and the numbers on the
paths indicates the success rate of each child node, and will be used during the
use of the local and global method for calculating the new weights.

11.2. Evaluation of the Methods

With the test setup described, it is time to perform the evaluation of the three
methods. This section contains that work.

11.2.1. Local Method

Tables D.2 and D.3 shown that when our optimization is run on simple actions
it produces trivial solutions. It does this because these simple actions always
succeeds, it was an expected result as we saw the same thing in [16]. This show
a limitation of our method in that it does not support emergent behavior such as
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Local Method

Children k1 k2
Start
Weight

Success
Rate 1

Calculation
1

Success
Rate 10

Calculation
10

Direct 0.33 0.108766 0.292461 0.139082 0.2867441
Arc 0.5 0.5 0.33 0.354559 0.528037 0.582345 0.586745

Spiral 0.33 0.0409731 0.179502 0.0270728 0.12651
Direct 0.33 0.192466 0.356178 0.167614 0.343552

Arc 0.75 0.25 0.33 0.37397 0.420521 0.447898 0.439249
Spiral 0.33 0.029734 0.223301 0.0267775 0.217199
Direct 0.33 0.203125 0.378015 0.142466 0.243032

Arc 0.25 0.75 0.33 0.313643 0.523616 0.573195 0.690409
Spiral 0.33 0.0337466 0.098369 0.0253378 0.0665591

Table 11.1.: A summation table of the results using the local method

going left more often than right results in covering particular areas of a game map.
Obviously it does not matter how we weight challenge and diversity as the same is
seen in tables D.5 and D.6.

What does provide useful results is when there is a selection between alternative
strategies where these strategies have a distinctive goal that it can fail to achieve,
and not simple actions as mentioned above. This can be seen in our selection of
strategies in The Quantum Sea shown in table 11.11. Here the strategies are all
trying to achieve the same goal, which result in more sensible data.

This is also the case when changing k1 and k2. Changing these values such that
diversity is weighted highest produces weights that are more even as we would
expect and optimizing for challenge produces weights that are closer to the success
rates of the behaviors as we expected.

It could be possible to add goal conditions to simple actions, such that their effi-
ciency could be evaluated in context of the game. This could be done by simply
replacing the action with a sequence with the action and the goal condition. In our
game it could be a condition that return success if an action brought the player
closer to the target.

The results using the local method on The Quantum Sea suggest that the local
is sufficient for typical applications in behavior trees, such as selecting between
alternative strategies, it does not need more than local data to evaluate the different
strategies.

11.2.2. Global Method

The results for the global method supports what have been observer during the
tests of the local method. All tables for probaility selectors with only simple ac-
tions (e.g tables D.11, D.18 and, D.24) show that when the global method is run
probability selectors which only have actions, it also produces trivial solutions and
hence the same can be concluded as with the local method. This means that
1For a more detailed table of results see appendix D.1.1
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Global Method

Children k1 k2
Start
Weight

Success
Rate 1

Calculation
1

Success
Rate 10

Calculation
10

Direct 0.33 0.163842 0.125336 0.128269 0.0524793
Arc 0.5 0.5 0.33 0.376137 0.87068 0.555834 0.946352

Spiral 0.33 0.0261248 0.00398339 0.016129 0.00116912
Direct 0.33 0.168627 0.223966 0.170845 0.183037

Arc 0.75 0.25 0.33 0.334013 0.747159 0.481235 0.796028
Spiral 0.33 0.0277778 0.0288749 0.0239453 0.0209353
Direct 0.33 0.156398 0.0727333 0.160099 0.0710868

Arc 0.25 0.75 0.33 0.355994 0.926097 0.368503 0.928341
Spiral 0.33 0.0340368 0.00116986 0.0255987 0.000571787

Table 11.2.: A summation table of the results using the global method

measurement on probability selectors with only simple actions does not contribute
with anything useful or emergent behavior.

Table 11.2.22 shows the a summation of the results of using the global method for
calculating the new weights. The results are hard to interpret because of the nature
of the global method, as this method is collapsing the behavior tree, calculating the
new weights and then expands the behavior tree again.

This mans that it is not possible to actually look at the results and conclude if
these are valid or good results. If the methods defined for restoring the canonical
behavior tree into the original behavior tree does not work as expected, the weights
might not be correctly set in the behavior tree after the conversion.

For actually being able to conclude on the results they should have been shown
for the canonical tree after the calculations, as these essential are calculations
on a local probability seletor. But this still leaves the problem of converting the
canonical behavior tree into its original form.

11.2.3. Constructed Example

The calculations using the local methods show what it is expected as when the cal-
culations were done on the data from The Quantum Sea, these results can bee seen
in appendix D.2 under the local subsection. It shows that when weighting either k1

or k2 higher it will produces weights towards diversity and challenge respectively.
Furthermore because every probability selector actually selects a strategy to ex-
ecute which means there no probability selector only with simple actions, which
either succeeds or fails every run. Therefore the results of the nested probability
selectors are more reasonable and follows the intuition of the weight optimization.

The global results actually resembles the local results but the reason for this could
be, that the behavior tree is much simpler than those of The Quantum Sea, or it
could simply be a coincidence. It also does not contain any special behaviors such
as infinite loops and parallels, which could “obscure” the values such that they

2For a more detailed table of results see appendix D.1.2
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does not make any sense to the naked eye. The uncertainty is the collapsing and
expanding of the behavior trees, which calculates weights for the whole tree and
not local. The results can be seen in appendix D.2 under the global subsection.

11.3. Comparison of the Methods

Now that we have performed tests on the each method it is now time to compare
these methods together conclude on which method is best and for what usage.

The local method provides results expected while the results of the global method
were not especial readable, only the results from the constructed example resem-
bled that of the local method. The local method only optimizes all of the local
probability selectors in the behavior tree, which means that any strategies present
are only optimized locally. This can be used for optimize certain local high level
probability selectors which selects a strategy, and should be applicable for the
most typical uses of behavior trees.

The global method optimizes the whole behavior tree and collapses, calculates the
new weights and expanding the behavior tree to its original form. If the method of
expanding the behavior tree does not work entire correctly could provide sources
of error on the weights, when trying to expand the behavior tree.

Because of the global optimization of the behavior tree, results in new weights
which might not be as sensible for a designer look at and perceive if the new
weights optimizes the behaviors as they should.

Instead of being forced to use either methods they could be used in conjunc-
tion with each other. Where the designer would select which probability selectors
should use the global optimization and the rest would then use the local method.
Of course any probability selectors which are nested under a probability selector
which is marked for global optimization will not undergo any local optimization.

This means that it is possible for the designer to actually use the local method
for any higher level of strategies which maybe are independent of other low level
selectors, while the global method is used for lower level of probability selectors to
optimize that particular subtree.

11.4. Evaluation of Behavior Tree Design Process

During the creation and testing of The Quantum Sea we have designed and created
different behavior trees. We have been using the method described in ”Where Game
AI Meets Academic AI”[16, 10, pp. 12], and will now evaluate the method and how
it is to use it for defining behavior trees.

We used the method as iterative development which made it feel very intuitive to
use because it resembles the way we develop software. It gives us the possibility to
revise any designed behavior trees and make any corrections necessary to them,
without having to start from scratch. Furthermore the object oriented nature of
both behavior trees makes it very easy to substitute behaviors and larger parts
of the with having to actually change any lines of code. Of course this implies
that there are no dependencies between behaviors that are substituted, but as the
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method suggests you should group dependent behaviors together in e.g a sequence
which would make it easier to replace that particular sequence with another be-
havior or composite.

Because of these two things it is very easy to create behavior trees and by follow-
ing the method, either strict or as guidelines, makes it very easy to make changes
to a behavior tree and you can put your main focus on the creation process rather
than use a lot of energy and time on none essential matters.

Even though the method brings some benefits it is also essential to have the
correct tools for creating behavior trees. The overall design process could be done
with pen and paper but could be made functional and effective using a diagram
drawing tool. Designing the behavior trees is one thing, but another is to cre-
ate the behavior tree for usage in the game. The SMARTS Designer creates this
connections between design and the game by creating an intermediate layer for
library to parse and dynamically load the needed behaviors. This has helped to
reduced a great amount of tedious work which should have been done by hand
and in code, and also makes the SMARTS Library more flexible. The ideal solution
would have been combining the diagram editor and the behavior tree editor into
one application instead of being spread out between a number of applications.

Furthermore, by having a tool for the creation and design of behavior trees could
”embed” the method more intuitively into the work process such that you would not
have to learn the method or read the steps, but these would been done intuitively
from the start through the workflow of the application.

11.5. Evaluation of Perception System

The perception system is used essentially as a method when trying to define what
the perception of a given AI character feels and looks like, and it provides a set of
building blocks which can be extended if necessary. At the moment there is no tool
support for the perception system, and this makes the design and construction
process for character perception cumbersome, as everything has to be done by
hand in code and on paper, or by using some available diagram tool. This means
that you can quickly loose the overview of how the designed perception system
works, and it is hard to change and maintain.

If we see the perception system as method rather than a deployable piece of soft-
ware, then it should be possible to define either a work flow or a concrete method
for designing and creating such a perception system. With a method defined a tool
could be created for designing and creating a perception system. While such a set
of tools does exist for Gluon by way of the Components created for this purpose, it
should of course be possible to use SMARTS outside of Gluon.

As such, one solution would be that the design process of the perception sys-
tem could be integrated into the SMARTS Designer, such that it can be used in
conjunction with characters there, and instead of defining the perception system
and the behavior tree of the character separately, you could design them together
creating a unified AI character in one tool.

On the technical side, the system does in fact function: Values gathered through
the system are adjusted correctly. However, due to shortcomings in Gluon’s script-
ing system (functions cannot be called between script objects, only from scripts to
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C++ objects) the use of the system in The Quantum Sea became too cumbersome.
Based on this, and the fact that it would be another level of variables, it was
decided not to use the perception system in the evaluation of the measurements
above, and simply leave the evaluation of the Perception System to a future project.

11.6. Conclusion

We have tested the local and global methods on two different test cases. All of the
results of the local method provided new weights which were expected. The test of
the global method on the constructed example returned new weights resembled the
ones returned from the local method. For The Quantum Sea the global method re-
turned weights which is not intuitively to spot if the new weights were as expected.
This could be that the expanding of the behavior tree is not done correctly or the
complexity of the behavior trees. Furthermore the two different methods should be
usable together if necessary, but the local method should be sufficient for typical
applications in behavior trees, such as selecting between alternative strategies.

We have used the method for designing behavior trees extensively during this
project, and it is very intuitively to use. it is essential to have tools for this task, as
it would become very cumbersome to maintain and do in hand and code. Because
we have SMARTS Designer the SMARTS Library has become more flexible, but the
design process and creation of behavior trees should have been in the same tool,
e.g in the SMARTS Library.

A perception was also created and was essential used as a method when it was
finished. Currently there exist no editor for the perception system, which makes
it very time comsuming and hard to use as everything has to be done by hand.
One solution could be integrating the design and creation into SMARTS Library
such that a unified game AI character could be created from one tool. Because of
limitations of the Gluon the perception system was not used during the testing of
the methods.
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Part V

Concluding Matters

With all methods explained and all data collated and ex-
plored, conclusions must be drawn. As the word goes, all
good things must come to a conclusion, and this is ours.
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CHAPTER

12

Conclusion

Different metrics have already been defined before for measurements of the enter-
tainment value of an AI oppenent[28]. These metrics, though, are heavily based
on time and the coverage of a level during runtime. Therefore we wanted to define
metrics which could be run on the behavior trees and just use the success rates of
selectors’ children for optimizing the behavior trees.

We defined a metric for behavior diversity by using the entropy[23] of the behavior
trees by using the weights on probability selectors for calculating this metric. We
also defined a challenge metric which is the formula for KL-divergence[24][18].
These two metrics added together then defines the interest metric, but the interest
metric was instead used for defining the weight for a given child behavior in a
probability selector.

Before using these new metrics for optimizing the weights in behavior trees, we
wanted to be able do some optimization on the behavior tree structure itself, which
led to a series of optimization strategies. By using these optimizations it is possible
to combine certain behaviors together without changing the overall behavior of the
tree.

From the three new metrics and the structure optimization of the behavior trees
it was possible to devise three different strategies for optimizing the weights in a
behavior tree. The first was global which meant that the whole behavior tree is
collapsed such that there are only one probability selector, the root, with a num-
ber child behaviors. Then the calculations could be made and behavior tree was
expanded to its original form. The second method was a local method but where it
was possible to concatenate selectors together, where it afterwards calculated the
new weights and expanded the selectors again. The last method is a pure local
method and only calculates the weights for each probability selector without any
form for behavior tree structure optimization.

We have looked at the implementation of the SMARTS Library and analysed the
problems which occurred during the first implementation of the library. We had a
dual layer of behavior trees, which was unnecessary and just took up more memory
than necessary, furthermore we had some problems using threads because of our
testing bed was based on timing. We reimplemented the behavior tree structure
such that it was a single layer, and removed any use of threads from the behavior
trees. We in stead changed the execution to use a scheduler instead.

Furthermore we have also added a perception system to the SMARTS Library
which enables the AI to be able to sense the world and getting information that
corresponds to its view on the world.

We have also looked at how incorporate SMARTS into Gluon, where we first looked
at how Gluon works and how it supported components and plugins. The next
was to integrate SMARTS into Gluon which was done using the components and
plugin systems in Gluon and GluonEngine. We implemented new components
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and plugins for the SMARTS Library such that the functionality of the library was
accessible in Gluon Creator.

In the process of this integration, support was added directly to SMARTS Library
for creating scriptable versions of some of the classes in the library. This allows
other users to implement a scripted system akin to that found in Gluon, without
having to actually make use of GluonEngine. This support was created for all the
parts of the library where it makes sense, meaning any class which is otherwise
intended to be reimplemented when using SMARTS Library in a game.

The game The Quantum Sea was implemented in a scaled-down version compared
to the one described in the game design documents, as implementing the full game
would have been entirely out of scope for this project. However, enough was imple-
mented to allow us to perform evaluation of the perception system and behavior
trees in general trough use of the game.

The chapters pertaining to this describe both the thought processes which went
into the game design itself, and that of the code design. This provides readers with
the possibility to follow the concepts without having to study the code of the game
in any serious depth.

Tests of the local and global methods has been performed on two different test
cases, first The Quantum Sea and last on a constructed example. We performed
three tests in each test case with different setups of the k1 and k2, one for equal,
one for more weight on diversity and one on weight on challenge. The tests of the
local method on each test case provided results which meet the expectations of
what the new weights should be. The global method resulted in new weights for
the constructed example which resembles the pattern of the local method, while
the global returned non sensible weights for the The Quantum Sea. The reason
could be that the behavior trees used in The Quantum Sea are more complex and
uses special behaviors such as parallels and infinite loops. The local meth

The construction of behavior trees show that not only does the method described
in Where Game AI Meets Academic AI[16, pp. 12] work, it shows that it is intuitive
and is in fact what one implicitly does when constructing a behavior tree. One of
the great advantages and essential parts of this method is to have an editor, and
in this case it is the SMARTS Designer. The editor lacks some functionality which
would increase the usefulness of it, and this feature is the possibility for designing
the behavior tree directly in the tool.

The perception system is used as a method which means that doing the design
and creation by hand is cumbersome and time consuming, because there are cur-
rently no tools for designing and creating perception in SMARTS. A good solution
would be to integrate the design and creation process into SMARTS Designer such
that a unified game AI character can be created with use of one tool. It has not
been possible to test the perception system further than that values are correctly
adjusted, because of limitations in Gluon. Due to this and the fact that it would
be a further variable all tests have been performed without the perception system.

As we reach the end of the report, we believe that we have arrived at solutions
to the various parts of the purpose of the project as defined in Section 1.1 on
page 1: The behavior trees were formalized, methods for evaluating them were
devised, the SMARTS system was revised and extended, the Gluon integration
completed, a game prototype constructed and the various items needing evaluation
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were evaluated.
We would like to finish by thanking the reader for following us this far, and

invite you to continue by reading the next chapter, which contains various musings
on the project itself as well as the various items in it. It is our hope that your
experience with us has been as enjoyable as the creation of the project.
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13

Discussion and Future Work

The following is a set of discussions and musings on various topics related to this
report’s subject matter, but which is of a looser nature, which means it does not fit
into the flow of the report as such. We do, however, recommend that you still read
it, if your interest has been peaked by the preceding chapters, on the basis that
they suggest further research possibilities, as well as other items of relevance.

The first item up for discussion, but one so small that it does not warrant its
own section, is that of prefab support in Gluon. During the creation of the test
game used in this report, The Quantum Sea, the need for a prefab system was
highlighted. As such, we highly recommend that this be made a focus for the next
development cycle of the game engine.

13.1. The Quantum Sea

On the topic of The Quantum Sea itself, it was discovered that while the game
itself does indeed function rather well (and has turned out to be decidedly more
difficult to play well than anticipated), the various values for the particles need
tweaking work, something which was anticipated but still begs mention. However,
as the only test audience for the game has so far been the authors, it is suggested
that effort be put into play-testing the game prototype with unprepared players, to
evaluate the enjoyment level others will experience.

Further, it has been suggested that a generalized version of the implementation
of the music player found in The Quantum Sea be translated into C++ and inserted
into Gluon as an official component.

13.2. Metrics and Methods

The global method collapses and expands the behavior tree it works on, but this
is a very inefficient way of doing the calculations. It could be possible to do the
weight calculations without needing to collapse the tree. It could be possible to use
hierarchical entropy for this purpose or customize the method for use on behavior
trees.

Furthermore we are not sure if the collapsing and expanding of sequences is
done correctly. These operations are based on tests and intuition, but we do not
have any strongly defined method for doing this. This could prove to be an im-
portant matter if you want to use the global method as it is now. However as
mentioned earlier this could prove to be unnecessary if a variant of hierarchical
entropy is used instead.
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13.3. Extensions to SMARTS Behavior Trees

One of the most basic concepts on which behavior trees are based is that it should
be easy to author behaviors. One way we can do this is by limiting repetition in the
design of behaviors. We already have one tool to save development time and mem-
ory usage with repeated behaviors: References. However references are limited in
that they do not allow for reuse of general behavior structure patterns. Behavior
patterns such as searching for an enemy and then attacking said enemy cannot
be encoded generally as a pattern in the current behavior tree implementation.

We suggest an Object Oriented Programming implementation similar to the one
described in [20]. This extension of OOP to Hierarchical State Machines transfers
easily to behavior trees as behavior trees can be seen as HFSMs with an extra set of
restrictions. This could be a huge part of what makes behavior trees a convenient
choice for a game designer. This method has previously been employed by the
authors of Halo, in their implementation of behavior trees[12].

13.4. Adjustments to SMARTS

The current version of SMARTS Library a behavior will continue executing until
it is done. This means that the current implementation of a behavior tree could
execute a behavior which has no relevance to the giving situation, because the
world state has changed.

There are several ways for getting past this problem, where the first is to use
interrupts such that behaviors can be interrupted during execution. Halo 2TM

uses something similar to this but it is instead called impulses and are used as
event triggers during the execution[12]. Another way is to check any conditions or
decorators on behavior before executing it, which would catch any changes in the
world state, and either prevent the behavior execute or continue execution.

Halo 2TM also uses a a prioritized list for execution of behaviors[12] which is
basically a standard selector as described in section 2.1.1 on page 6, where the
highest prioritized child has precedence and will be executed first if possible while
having the ability of interrupting the other children if necessary. The only change
necessary is to add conditions on each children of selector which defines if it is
possible to run the child. This change could be in subtrees and even in the root of
the tree, such that both the root and subtrees could “adapt” to the current world
state. It would then be possible to set a flag, if the subtrees should have precedence
over the root when checking the conditions such that the child selectors would be
run first and lastly the root or the other way around.

While the current implementation of SMARTS Library uses a scheduler for running
the behaviors it could be useful to add the possibility for the users to select if a
character should use the scheduler or threads for executing parallels as this could
prove useful for devices with multiple cores, while the other option could be used
on the more powerful mobile phones. Another option could also be allowing the
whole behavior tree to be run in a thread such that it runs without any uses of the
scheduler. Giving those possibilities the designers could “scale” or chose the most
appropriate execution method of the behavior trees.
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13.4.1. Perception System

Through the use in The Quantum Sea of the new perception system, one item
which has surfaced as a potential point for improvement is that currently the game
programmer needs to know about the perception atoms. That is, the programmer
needs to know to construct a perception atom before reading information about a
piece of perception information.

We thus suggest that this can be abstracted away by adding a function on the
perception system instance found on a Character, which takes a perceptionInfo
as an argument and returns the information known by the player about that per-
ceptionInfo. Behind the scenes, this would then keep track of perceptionAtom
instances, thus reducing the boilerplate code required in the existing system. This
method is essentially already employed in The Quantum Sea.

13.4.2. Measurements

While we have provided code for calculating the various measurements for use
in this report, a vital piece of work is missing which is needed to support game
designers, or specifically behavior designers, in their quest towards the perfect
behavior tree: For the measurements to be useful to them, the measurements need
to be available through the tools they already use, in our case SMARTS Designer.

We thus suggest that effort be put into the creation of this integration of the
measurements calculator, which would finally close the loop and allow for the use
of the tools all the way from idea through creation and refinement. However, the
insertion of these values, and indeed any functionality they support, is non-trivial;
they need to be both effective, but also non-intrusive to the use of the software. As
such, this would potentially be an interesting target for a student project on the
topic of usability and interaction with external customers.
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APPENDIX

A

Introducing Gluon

One of the problems faced by game creators is that of publishing; that is, getting
the game from the creator and into the hands of potential players. Gluon provides
a way of doing this, based on the Open Collaboration Services (OCS)[17]. This
distribution system is made possible because games created using Gluon’s engine,
cleverly named GluonEngine, do not have binaries. As such, there is nothing to
compile for each of the different platforms.

In stead, GluonEngine based games are based around a simple description
markup language named Gluon Definition Language (GDL), which is clear text
and both human and machine readable, and all game logic is created using scripts.
GluonEngine itself provides the computationally heavy functionality (such as graph-
ics, asset management and so on) through a system of objects called Components.
The following is a short introduction to how GluonEngine based games function.
After this Gluon Creator is introduced, followed by a description of the Gluon dis-
tribution website. Lastly the collection of applications collectively known as Gluon
Player is introduced.

Figure A.1 is a description of the process of creating games with Gluon. It shows
how a game is first conceived by a game creator, who then through the KDE De-
velopment Platform based Gluon Creator creates the game and publishes it to the
world through OCS and eventually to the players of games, who can be on any of
a wide variety of operating systems.

A.1. The Gluon Packages

Before we start, the structure of Gluon should be introduced shortly. The diagram
in Figure A.2 on the following page shows how the dependencies between the differ-
ent packages in the Gluon software system are structured in a strict, hierarchical

Figure A.1.: The flow of Gluon based games, from conception to playing and back
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Figure A.2.: The hierarchy of the different packages in Gluon

manner.

At the top you find the GluonCore package, which contains common functional-
ity for all of Gluon - this includes such things as the GDL handling system and the
cross platform friendly singleton creation system used in the different libraries.

This is then inherited by the four main libraries: GluonAudio, which takes care
of sound playback, GluonGraphics, which is the OpenGL based graphics ren-
dering engine and GluonInput, which is the powerful game-centric input device
handling system created in part by the authors of this report.

Underneath this you find GluonEngine, which is where Gluon becomes truly
game centric. This is where the system described in the introduction sits, including
the game loop (which takes care of updating and drawing the screen at appropriate
intervals), and where the Component and Asset system sits. Since this is entirely
modular, the engine does not have any hard requirements other than GluonCore,
but rather has optional dependencies through numerous Component and Asset
classes. Note that the Components shown are not the only ones available, but
rather a few examples.

Finally the Gluon Player and Gluon Creator packages represent the Gluon Cre-
ator application, and the set of applications collectively known as Gluon Player.
These depend only on GluonEngine, and all other contact with Gluon’s packages
is conducted through the engine’s GameProject system.
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A.2. Gluon Engine

From the game developer’s perspective, the Gluon Engine is essentially a struc-
tured way of creating games, based on a hierarchy of types of objects:

• A GameProject contains a number of Assets.

• Assets are the only way of accessing the filesystem from inside the game, and
provide handling of content files, such as sound files, graphics and so on. A
special type of Asset is the Scene asset.

• The GameProject can contain any number of Scenes, which in turn contain
any number of GameObjects.

• GameObjects represent the scene graph, and in themselves only exist as a
position in the world. They contain any number of other GameObjects, which
in turn contain any number of GameObjects, and so on. They furthermore
contain any number of Components.

• Components are the way the game creator adds functionality to GameOb-
jects. A Component can be for example a TextRenderer, which will render a
text at the position in space represented by the GameObject it is attached to,
or a KeyboardInput, which will react to the input of a key on the keyboard.

This is the persistence layer for games which the Gluon Engine provides. To
make it a complete game engine, however, it must also have a game loop - the
equivalent of an event loop in other applications. This is provided by the class
GluonEngine::Game, which also takes care of keeping track of which scene is the
current scene. The game loop functions as follows:

• Call start() on all GameObjects in the current scene

• Loop:

– Call update() on all GameObjects at a specified interval

– Call draw() on all GameObjects as often as possible

• When game is stopped, call stop() on all GameObjects

This game loop is heavily inspired by the ”Constant Game Speed independent of
Variable FPS” game loop described by Koen Witters[27]. There is a second game
loop available in the class as well, which can optionally be used, which is a fixed
frame rate game loop, where update and draw are called consecutively every time.
This means that the game’s update function will be run exactly as many times
as the drawing function. While this seems like a good idea on the surface, the
problem is that it does not degrade well with slow hardware. In a few situations,
however, this simpler approach is appropriate - for example puzzle games where
the update function’s precision is less important than other types of games.
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Figure A.3.: Gluon Creator, editing a scene in the game The Quantum Sea

A.3. Gluon Creator

While it is possible to create GameProjects for GluonEngine entirely by hand, using
only a text editor to create the GDL files, this is not really convenient. Enter Gluon
Creator, a tool designed with creative persons in mind. What this means is that
rather than showing people code for things, as it happens when working with
for example the 2D game engine LÖVE1 or Microsoft’s XNA Game Studio2, Gluon
Creator allows for the construction of games using a combination of drag and drop
ordering of the GameObjects, property setting and direct manipulation.

This in turn allows people who are not familiar with programming create at least
parts of the games. It is still required for for a programmer to create the final glue
which binds the elements in the in the game together, that is the game logic. This,
however, is thus reduced to a minimum, so that the work load is spread out more
evenly, and the pressure on the programmer is reduced heavily.

The game logic is provided by a special component, the Script component, which
as the name indicates uses scripts to manipulate and store information about the
game world not stored implicitly by the GameObjects themselves. This includes
arbitrary things such as health, what should happen when activating an input
and other such game specific functionality.

As shown in Figure A.3 Gluon Creator is based around a central view of the level
itself, with the project contents on one side and the contents of the current scene
shown on the other. The Messages panel allows the game creator to view any
errors that might be provided by any script, and the Property view provides game
creators with a convenient, centralized way of manipulating any exposed settings
in the Components attached to the currently selected GameObject - including those
exposed from a script.

1Getting Started with LÖVE: http://love2d.org/wiki/Getting_Started
2Getting Started with XNA: http://creators.xna.com/en-US/education/gettingstarted
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Figure A.4.: Marketing material for the Gaming Freedom community website

A.4. Gaming Freedom

The website onto which Gluon Creator publishes the games created with it is called
GamingFreedom.com. This website is based on the OCS based openDesktop.org
framework provided by h i v e 01, a German company specialized in social net-
works, and which is heavily involved with open source projects. The company is
furthermore owned by Frank Karlitschek, who is also the main author of the OCS
specification.

Pictured in Figure A.4 is the current front page of the website. What is not visible
here is that not only is Gaming Freedom a place where you can upload games and
download them to play on your local device using Gluon Player, as described in
the next section. It also doubles as a way to conduct mediated interaction between
both the players of games and the creators of games - in short, a community
website for Gluon’s wide ranging community.

To assist in this community feel, the following is a selection of the functionality
included on the website:

Avatars Simple as it seems, user avatars on community websites supply an im-
portant way of identifying friends: Humans are much faster at identifying
shapes and colors than they are at identifying words, and as such a user
avatar provides a straight forward way of doing this.

Achievements A relatively recent development in the world of gaming is that of
achievements: The idea that in various games, there are other goals than
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those set down by the normal flow of the game, basically providing an extra
game within the game. This concept is known as achievements. Each game
will have any number of achievements, and most games publish information
on how to achieve each achievement in more or less vague ways, but always
the number of achievements in the game is public. As such, the players of
games are then able to show their achievements. Gaming Freedom itself pro-
vides, in addition to the in-game achievements, a way of gaining achievements
for the community itself (such as publishing a number of highly rated games,
posting a number of highly rated comments, performing a lot of tagging and
others).

Comments To allow both the players and creators of games to speak with each
other, every item on the website can be commented on: Games, players, cre-
ators, even other comments.

Concepts However simple it might be to create games with Gluon, it will still re-
quire skills that not everybody has. As such, Gaming Freedom provides a
forum for people to write up and discuss ideas for games they might wish to
create.

Friends One of the core concepts of community websites is that of friending peo-
ple. However, rather than having a flat, Facebook-like structure of everybody
simply being friends, Gaming Freedom will let you structure your friends by
adding tags to them - same as any other piece of information, except you are
the only tagger for your friends.

Player Profile The profile of any player of games on Gaming Freedom provides a
wide range of information on that player: What games they have played and
how much, what Achievements they have gained, what comments they have
made. For creators of games it also includes which games they have pub-
lished.

Ratings Some people may be less vocal than others, but still wish to take part in the
community in other ways - or simply wish to show their support or dislike of
something in a non-vocal manner, rather than saying again the same things
others have already said in a comment. So, they are then allowed to rate on
each item on the website as well.

Tags The term tagging in Web 2.0 covers two different concepts: Broad and nar-
row folksonomies. A narrow folksonomy is the type of tagging applied on
anonymous websites, where the tagging is based on a word being connected
to an item of information. A broad folksonomy is used on sites which require
logging in to allow tagging, and connects the user, the word and the item of
information, so that the applicability of a word to an item can be weighted on
how many users have assigned that word to the item. Gaming Freedom, as a
community website, employs broad folksonomies, except for the friends page
mentioned above, which only employs narrow folksonomies[26].
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A.5. GLUON PLAYER

Figure A.5.: The Gluon Player Plasmoid in the version available at time of writing

A.5. Gluon Player

The last link in the distribution chain is Gluon Player. Firstly it functions as
a device client for the Gaming Freedom website. That is, it enables the players of
games to use all the functionality of the website, without loading up a web browser.
This follows the concept of the Silk project, which wishes to ”separate the web from
the browser”3.

Further than this, it allows the players of games to take the games with them
anywhere and everywhere. As indicated by the infographic in Figure A.1 on page 121,
Gluon Player runs on a multitude of platforms, including hand-held devices such
as Nokia’s N900 and the Compal Jax10, as well as full blown desktop machines.
This can be seen in real life in Figure A.5.

An important feature of Gluon Player is that it does not require you to be logged
in to anything to play games. In fact it does not even require you to be logged in to
download games new games to the device. This is possible due to the licensing of
GluonEngine based games, which is based on the Free Culture movement4.

3The Project Silk website: http://techbase.kde.org/Projects/Silk
4Gluon Licensing Explained: http://www.gamingfreedom.org
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APPENDIX

B

Design for The Quantum Sea

The next four pages contain scaled-down versions of the design sheets created for
the game The Quantum Sea over the course of a one month solid brain storming
session during the new year holiday between 2009 and 2010. This design is the
basis for the game created as a test bed in this report.
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Appendix B. Design for The Quantum Sea
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Appendix B. Design for The Quantum Sea
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APPENDIX

C

Game Item Definitions

The following pages contain the non-collidable items and particle information sheets
for the various items as used in the single level of The Quantum Sea created for
this report.

C.1. Non-collidable Items

Particle Initial spin Spin deviation Mass Life time
Gamma Ray 0 ◦/tP 10 ◦/tP 1 u 10 tP
Photon 10◦/tP 0 ◦/tP 1 u 100 tP

C.2. Particle Definition Sheets

C.2.1. Isotopes
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C.2. PARTICLE DEFINITION SHEETS
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Appendix C. Game Item Definitions

C.2.2. Particles
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C.2. PARTICLE DEFINITION SHEETS
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C.2.3. Sub-particles

140 Perceived Challenge



APPENDIX

D

Test Results

D.1. The Quantum Sea Results

D.1.1. Local Method

Equal

The results of the tests using k1 = 0.5 and k2 = 0.5.
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Figure D.1.: Graph over the weights on the Root children for equal k′s

Evaluating the appropriateness of behavior trees 141



Appendix D. Test Results

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 201 1848 0.108766 0.292461

Arc 735 2073 0.354559 0.528037
Spiral 64 562 0.0409731 0.179502

2
Direct 250 1394 0.17934 0.343101

ArcRoot 724 1708 0.423888 0.527484
SpiralRoot 26 1019 0.0255152 0.129415

3
Direct 169 1349 0.125278 0.290214

Arc 802 1722 0.465738 0.559567
Spiral 29 864 0.0335648 0.150219

4
Direct 186 1228 0.151466 0.30041

Arc 771 1669 0.461953 0.524634
Spiral 43 837 0.051374 0.174956

5
Direct 172 1276 0.134796 0.293616

Arc 795 1687 0.471251 0.548993
Spiral 33 852 0.0387324 0.15739

6
Direct 84 685 0.122628 0.269144

Arc 897 1506 0.595618 0.593164
Spiral 19 592 0.0320946 0.137691

7
Direct 86 693 0.124098 0.267607

Arc 890 1521 0.585141 0.581092
Spiral 24 605 0.0396694 0.151301

8
Direct 93 710 0.130986 0.281403

Arc 890 1539 0.578298 0.591278
Spiral 17 634 0.0268139 0.12732

9
Direct 98 761 0.128778 0.287941

Arc 890 1577 0.564363 0.602784
Spiral 12 647 0.0185471 0.109275

10
Direct 100 719 0.139082 0.2867441

Arc 884 1518 0.582345 0.586745
Spiral 16 591 0.0270728 0.12651

Table D.1.: The calculations for the Root node for equal k′s
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D.1. THE QUANTUM SEA RESULTS

!"##$%

&'(#)%

! " # $ % & ' ( ) !*

*+********

*+!*******

*+"*******

*+#*******

*+$*******

*+%*******

*+&*******

*+'*******

,--.

/0123.

413

560178

9783:87.0-;

5
:
3
3
2
<
<
=,
7
.2

Figure D.2.: Graph over the success rates on the Root children for equal k′s
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Figure D.3.: Graph over the weights on the Speed children for equal k′s
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Appendix D. Test Results

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 1264 1270 0.995276 0.250285
Med Speed 857 861 0.995354 0.250295
Low Speed 733 741 0.989204 0.24952
High Speed 1019 1027 0.99221 0.249899

2

Keep Speed 907 910 0.996703 0.249789
Med Speed 593 594 0.998316 0.249991
Low Speed 676 677 0.998523 0.250017
High Speed 918 918 1 0.250202

3

Keep Speed 1015 1019 0.996075 0.249668
Med Speed 611 611 1 0.25016
Low Speed 586 586 1 0.25016
High Speed 852 853 0.998828 0.250013

4

Keep Speed 888 889 0.998875 0.250133
Med Speed 553 554 0.998195 0.250048
Low Speed 558 560 0.996429 0.249826
High Speed 890 892 0.997758 0.249993

5

Keep Speed 962 965 0.996891 0.249744
Med Speed 558 558 1 0.250133
Low Speed 573 573 1 0.250133
High Speed 865 866 0.998845 0.249989

6

Keep Speed 826 829 0.996381 0.249808
Med Speed 460 460 1 0.250261
Low Speed 339 340 0.997059 0.249893
High Speed 561 562 0.998221 0.250038

7

Keep Speed 830 830 1 0.25
Med Speed 471 471 1 0.25
Low Speed 281 281 1 0.25
High Speed 632 632 1 0.25

8

Keep Speed 877 878 0.998861 0.249945
Med Speed 448 448 1 0.250088
Low Speed 323 323 1 0.250088
High Speed 599 600 0.998333 0.249879

9

Keep Speed 928 929 0.998924 0.249899
Med Speed 468 468 1 0.250034
Low Speed 341 341 1 0.250034
High Speed 600 600 1 0.250034

10

Keep Speed 833 833 1 0.250051
Med Speed 482 482 1 0.250051
Low Speed 306 306 1 0.250051
High Speed 615 616 0.998377 0.249848

Table D.2.: The calculations for the Speed node for equal k′s
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D.1. THE QUANTUM SEA RESULTS

!"##$%

&'(#)%

! " # $ % & ' ( ) !*

*+)("*****

*+)($*****

*+)(&*****

*+)((*****

*+))******

*+))"*****

*+))$*****

*+))&*****

*+))(*****

!+********

!+**"*****

,-../

0..-1,-../

2341,-../

5./1,-../

67891,-../

:;<=><;?73@

,
>
=
=
.
A
A
1B
;
?.

Figure D.4.: Graph over the success rates on the Speed children for equal k′s

Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 1722 1735 0.992507 0.499888

Spin Right 1806 1818 0.993399 0.500112

2
Spin Left 1343 1346 0.997771 0.500284

Spin Right 1329 1335 0.995506 0.4997161

3
Spin Left 1307 1311 0.996949 0.500015

Spin Right 1259 1263 0.996833 0.499985

4
Spin Left 1240 1246 0.995185 0.500215

Spin Right 1218 1226 0.993475 0.499785

5
Spin Left 1264 1269 0.99606 0.499707

Spin Right 1244 1246 0.998395 0.500293

6
Spin Left 1009 1015 0.994089 0.499957

Spin Right 1071 1077 0.994429 0.500043

7
Spin Left 1066 1069 0.997194 0.500369

Spin Right 1038 1044 0.994253 0.499631

8
Spin Left 1077 1081 0.9963 0.500232

Spin Right 1076 1082 0.994455 0.499768

9
Spin Left 1097 1101 0.996367 0.499769

Spin Right 1113 1115 0.998206 0.500231

10
Spin Left 1071 1074 0.997207 0.500018

Spin Right 1019 1022 0.997065 0.499982

Table D.3.: The calculations for the Spin node for equal k′s
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Appendix D. Test Results
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Figure D.5.: Graph over the weights on the Spin Direction children for equal k′s
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Figure D.6.: Graph over the success rates on the Spin Direction children for equal
k′s
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D.1. THE QUANTUM SEA RESULTS

Behavior Diversity

The results of the tests using k1 = 0.75 and k2 = 0.25.

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 281 1460 0.192466 0.356178

Arc 681 1821 0.37397 0.420521
Spiral 38 1278 0.029734 0.223301

2
Direct 265 1511 0.175381 0.352825

Arc 708 1748 0.405034 0.434947
Spiral 27 1176 0.0229592 0.212228

3
Direct 252 1503 0.167665 0.347867

Arc 718 1749 0.41052 0.435148
Spiral 30 1182 0.0253807 0.216985

4
Direct 256 1528 0.167539 0.345522

Arc 707 1771 0.399209 0.429286
Spiral 37 1224 0.0302288 0.225191

5
Direct 258 1532 0.168407 0.347012

Arc 707 1770 0.399435 0.430641
Spiral 35 1233 0.0283861 0.222347

6
Direct 258 1592 0.16206 0.348327

Arc 709 1859 0.381388 0.431429
Spiral 33 1274 0.0259027 0.220244

7
Direct 266 1490 0.178523 0.349991

Arc 701 1721 0.407321 0.430148
Spiral 33 1187 0.0278012 0.219861

8
Direct 267 1517 0.176005 0.35098

Arc 702 1757 0.399545 0.430816
Spiral 31 1179 0.0262935 0.218204

9
Direct 261 1504 0.173537 0.349789

Arc 708 1745 0.405731 0.432531
Spiral 31 1191 0.0260285 0.217681

10
Direct 236 1408 0.167614 0.343552

Arc 735 1641 0.447898 0.439249
Spiral 29 1083 0.0267775 0.217199

Table D.4.: The calculations for the Root node for k1 = 0.75 and k2 = 0.25
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Appendix D. Test Results

!"##$%

&'(#)%

! " # $ % & ' ( ) * "!

!+!!!!!!!!

!+!&!!!!!!

!+"!!!!!!!

!+"&!!!!!!

!+#!!!!!!!

!+#&!!!!!!

!+$!!!!!!!

!+$&!!!!!!

!+%!!!!!!!

!+%&!!!!!!

!+&!!!!!!!

,--.

/0123.

413

560178

9783:87.0-;<

=
2
0>
?
.

Figure D.7.: Graph over the weights on the Root children for k1 = 0.75 and k2 = 0.25
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Figure D.8.: Graph over the success rates on the Root children for k1 = 0.75 and
k2 = 0.25
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D.1. THE QUANTUM SEA RESULTS

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 1087 1088 0.999081 0.249988
Med Speed 538 538 1 0.250045
Low Speed 644 644 1 0.250045
High Speed 1007 1009 0.998018 0.249921

2

Keep Speed 1039 1041 0.998079 0.250011
Med Speed 608 608 1 0.250131
Low Speed 616 620 0.993548 0.249727
High Speed 986 986 1 0.250131

3

Keep Speed 1007 1011 0.996044 0.249861
Med Speed 582 582 1 0.250109
Low Speed 650 650 1 0.250109
High Speed 998 1001 0.997003 0.249921

4

Keep Speed 971 975 0.995897 0.249838
Med Speed 646 646 1 0.250095
Low Speed 660 660 1 0.250095
High Speed 1012 1014 0.998028 0.249972

5

Keep Speed 979 981 0.997961 0.249965
Med Speed 638 638 1 0.250093
Low Speed 696 698 0.997135 0.249913
High Speed 982 983 0.998983 0.250029

6

Keep Speed 1115 1118 0.997317 0.249942
Med Speed 601 601 1 0.25011
Low Speed 639 640 0.998437 0.250012
High Speed 1086 1089 0.997245 0.249937

7

Keep Speed 964 968 0.995868 0.249886
Med Speed 611 611 1 0.250145
Low Speed 638 640 0.996875 0.24995
High Speed 987 989 0.997978 0.250019

8

Keep Speed 1052 1053 0.99905 0.249955
Med Speed 643 643 1 0.250015
Low Speed 626 626 1 0.250015
High Speed 951 951 1 0.250015

9

Keep Speed 999 1000 0.999 0.249976
Med Speed 594 594 1 0.250038
Low Speed 686 687 0.998544 0.249947
High Speed 966 966 1 0.250038

10

Keep Speed 896 896 1 0.250074
Med Speed 575 575 1 0.250074
Low Speed 629 630 0.998413 0.249975
High Speed 943 946 0.996829 0.249876

Table D.5.: The calculations for the Speed node for k1 = 0.75 and k2 = 0.25
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Appendix D. Test Results
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Figure D.9.: Graph over the weights on the Speed children for k1 = 0.75 and k2 =
0.25
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Figure D.10.: Graph over the success rates on the Speed children for k1 = 0.75 and
k2 = 0.25
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D.1. THE QUANTUM SEA RESULTS

Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 1509 1513 0.997356 0.500081

Spin Right 1518 1524 0.996063 0.499919

2
Spin Left 1425 1430 0.996503 0.500085

Spin Right 1435 1442 0.995146 0.499915

3
Spin Left 1408 1417 0.993649 0.499818

Spin Right 1444 1449 0.996549 0.500182

4
Spin Left 1466 1472 0.995924 0.499916

Spin Right 1455 1459 0.997258 0.500084

5
Spin Left 1521 1524 0.998031 0.500053

Spin Right 1421 1425 0.997193 0.499947

6
Spin Left 1516 1525 0.994098 0.49967

Spin Right 1553 1554 0.999356 0.50033

7
Spin Left 1352 1360 0.994118 0.499841

Spin Right 1488 1493 0.996651 0.500159

8
Spin Left 1441 1443 0.998614 0.499913

Spin Right 1436 1436 1 0.500087

9
Spin Left 1399 1402 0.99786 0.500121

Spin Right 1469 1475 0.995932 0.499879

10
Spin Left 1307 1312 0.996189 0.499945

Spin Right 1361 1365 0.99707 0.500055

Table D.6.: The calculations for the Spin node for k1 = 0.75 and k2 = 0.25!"##$%
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Figure D.11.: Graph over the weights on the Spin Direction children for k1 = 0.75
and k2 = 0.25
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Appendix D. Test Results
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Figure D.12.: Graph over the success rates on the Spin Direction children for k1 =
0.75 and k2 = 0.25
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D.1. THE QUANTUM SEA RESULTS

Challenge

The results of the tests using k1 = 0.25 and k2 = 0.75.

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 351 1728 0.203125 0.378015

Arc 600 1913 0.313643 0.523616
Spiral 49 1452 0.0337466 0.098369

2
Direct 153 1419 0.107822 0.222697

Arc 825 1675 0.492537 0.695845
Spiral 22 780 0.0282051 0.0814572

3
Direct 165 1054 0.156546 0.263876

Arc 806 1579 0.51045 0.640298
Spiral 29 715 0.0405594 0.0958266

4
Direct 185 1251 0.147882 0.272565

Arc 776 1750 0.443429 0.621087
Spiral 39 925 0.0421622 0.106347

5
Direct 198 1244 0.159164 0.285048

Arc 773 1695 0.456047 0.627757
Spiral 29 884 0.0328054 0.0871954

6
Direct 180 1187 0.151643 0.275749

Arc 800 1664 0.480769 0.655163
Spiral 20 835 0.0239521 0.0690883

7
Direct 106 724 0.146409 0.24734

Arc 881 1526 0.577326 0.692125
Spiral 13 580 0.0224138 0.0605348

8
Direct 100 685 0.145985 0.245685

Arc 888 1516 0.585752 0.696516
Spiral 12 566 0.0212014 0.0577989

9
Direct 130 756 0.171958 0.27319

Arc 853 1540 0.553896 0.656856
Spiral 17 608 0.0279605 0.0699533

10
Direct 104 730 0.142466 0.243032

Arc 881 1537 0.573195 0.690409
Spiral 15 592 0.0253378 0.0665591

Table D.7.: The calculations for the Root node for k1 = 0.25 and k2 = 0.75
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Appendix D. Test Results
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Figure D.13.: Graph over the weights on the Root children for k1 = 0.25 and k2 =
0.75
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Figure D.14.: Graph over the success rates on the Root children for k1 = 0.25 and
k2 = 0.75
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D.1. THE QUANTUM SEA RESULTS

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 1131 1132 0.999117 0.250147
Med Speed 653 653 1 0.250313
Low Speed 756 759 0.996047 0.24957
High Speed 1094 1096 0.998175 0.24997

2

Keep Speed 1011 1012 0.999012 0.24999
Med Speed 591 591 1 0.250175
Low Speed 628 629 0.99841 0.249877
High Speed 861 862 0.99884 0.249958

3

Keep Speed 876 877 0.99886 0.249904
Med Speed 523 523 1 0.250118
Low Speed 503 503 1 0.250118
High Speed 729 730 0.99863 0.249861

4

Keep Speed 1099 1100 0.999091 0.250015
Med Speed 534 535 0.998131 0.249834
Low Speed 510 510 1 0.250185
High Speed 855 856 0.998832 0.249966

5

Keep Speed 1028 1029 0.999028 0.249919
Med Speed 545 545 1 0.250101
Low Speed 513 513 1 0.250101
High Speed 847 848 0.998821 0.24988

6

Keep Speed 964 965 0.998964 0.250256
Med Speed 539 539 1 0.250451
Low Speed 477 480 0.99375 0.249276
High Speed 863 865 0.997688 0.250017

7

Keep Speed 890 890 1 0.25
Med Speed 498 498 1 0.25
Low Speed 315 315 1 0.25
High Speed 547 547 1 0.25

8

Keep Speed 819 821 0.997564 0.24973
Med Speed 386 386 1 0.250187
Low Speed 349 349 1 0.250187
High Speed 643 6446 0.998447 0.249896

9

Keep Speed 911 911 1 0.25
Med Speed 494 494 1 0.25
Low Speed 307 307 1 0.25
High Speed 583 583 1 0.25

10

Keep Speed 871 872 0.998853 0.249961
Med Speed 434 434 1 0.250177
Low Speed 381 382 0.997382 0.249685
High Speed 578 578 1 0.250177

Table D.8.: The calculations for the Speed node for k1 = 0.25 and k2 = 0.75
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Appendix D. Test Results
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Figure D.15.: Graph over the weights on the Speed children for k1 = 0.25 and k2 =
0.75
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Figure D.16.: Graph over the success rates on the Speed children for k1 = 0.25 and
k2 = 0.75
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D.1. THE QUANTUM SEA RESULTS
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Figure D.17.: Graph over the weights on the Spin Direction children for k1 = 0.25
and k2 = 0.75
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Figure D.18.: Graph over the success rates on the Spin Direction children for k1 =
0.25 and k2 = 0.75
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Appendix D. Test Results

Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 1645 1649 0.997574 0.499887

Spin Right 1643 1646 0.998177 0.500113

2
Spin Left 1210 1213 0.997527 0.500151

Spin Right 1217 1221 0.996724 0.499849

3
Spin Left 1150 1156 0.99481 0.500205

Spin Right 1108 1115 0.993722 0.499795

4
Spin Left 1319 1326 0.994721 0.499293

Spin Right 1313 1315 0.998479 0.500707

5
Spin Left 1288 1293 0.996133 0.500023

Spin Right 1248 1253 0.99601 0.499977

6
Spin Left 1233 1236 0.997573 0.500767

Spin Right 1223 1231 0.993501 0.499233

7
Spin Left 1073 1076 0.997212 0.500395

Spin Right 1018 1023 0.995112 0.499605

8
Spin Left 1045 1047 0.99809 0.500554

Spin Right 1025 1030 0.995146 0.499446

9
Spin Left 1088 1090 0.998165 0.500731

Spin Right 1043 1049 0.99428 0.499269

10
Spin Left 1052 1058 0.994329 0.499287

Spin Right 1061 1063 0.998119 0.500713

Table D.9.: The calculations for the Spin node for k1 = 0.25 and k2 = 0.75

158 Perceived Challenge



D.1. THE QUANTUM SEA RESULTS

D.1.2. Global Method

Equal

The results of the tests using k1 = 0.5 and k2 = 0.5.

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 261 1593 0.163842 0.125336

Arc 703 1869 0.376137 0.87068
Spiral 36 1378 0.0261248 0.00398339

2
Direct 162 1128 0.143617 0.079149

Arc 815 1759 0.463331 0.918146
Spiral 23 956 0.0240586 0.00270473

3
Direct 181 1227 0.147514 0.088658

Arc 793 1810 0.438122 0.908202
Spiral 26 1027 0.0253165 0.00314006

4
Direct 185 1307 0.141546 0.0862301

Arc 783 1827 0.428571 0.909516
Spiral 32 1056 0.030303 0.00425401

5
Direct 171 1249 0.13691 0.0768372

Arc 805 1784 0.451233 0.920229
Spiral 24 973 0.024666 0.00293413

6
Direct 148 1050 0.140952 0.0733083

Arc 824 1716 0.480186 0.922607
Spiral 28 856 0.0327103 0.00408442

7
Direct 101 886 0.113995 0.0479383

Arc 884 1680 0.52619 0.950382
Spiral 15 773 0.0194049 0.00168001

8
Direct 106 876 0.121005 0.0519728

Arc 876 1663 0.526759 0.94577
Spiral 18 758 0.0237467 0.00225696

9
Direct 92 868 0.105991 0.0410457

Arc 895 1644 0.544404 0.957528
Spiral 13 726 0.0179063 0.00142595

10
Direct 103 803 0.128269 0.0524793

Arc 886 1594 0.555834 0.946352
Spiral 11 682 0.016129 0.00116912

Table D.10.: The calculations for the Root node for equal k′s
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Appendix D. Test Results
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Figure D.19.: Graph over the weights on the Root children for equal k′s
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Figure D.20.: Graph over the success rates on the Root children for equal k′s
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D.1. THE QUANTUM SEA RESULTS

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 375 376 0.99734 0.250035
Med Speed 300 302 0.993377 0.249538
Low Speed 405 406 0.997537 0.250059
High Speed 509 509 1 0.250368

2

Keep Speed 222 223 0.995516 0.249722
Med Speed 218 219 0.995434 0.249711
Low Speed 377 377 1 0.250283
High Speed 309 309 1 0.250283

3

Keep Speed 250 251 0.996016 0.249716
Med Speed 222 222 1 0.250215
Low Speed 347 348 0.997126 0.249855
High Speed 406 406 1 0.250215

4

Keep Speed 282 282 1 0.250248
Med Speed 242 242 1 0.250248
Low Speed 376 379 0.992084 0.249256
High Speed 404 404 1 0.250248

5

Keep Speed 277 278 0.996403 0.249747
Med Speed 230 230 1 0.250198
Low Speed 367 368 0.997283 0.249857
High Speed 373 373 1 0.250198

6

Keep Speed 235 236 0.995763 0.249708
Med Speed 211 211 1 0.250239
Low Speed 308 308 1 0.250239
High Speed 294 295 0.99661 0.249814

7

Keep Speed 221 221 1 0.25
Med Speed 145 145 1 0.25
Low Speed 255 255 1 0.25
High Speed 265 265 1 0.25

8

Keep Speed 183 183 1 0.25044
Med Speed 200 202 0.990099 0.249197
Low Speed 241 242 0.995868 0.249922
High Speed 249 249 1 0.25044

9

Keep Speed 164 164 1 0.250504
Med Speed 179 180 0.994444 0.249807
Low Speed 283 286 0.98951 0.249186
High Speed 238 238 1 0.250504

10

Keep Speed 144 144 1 0.25
Med Speed 148 148 1 0.25
Low Speed 262 262 1 0.25
High Speed 249 249 1 0.25

Table D.11.: The calculations for the Speed node in the Direct strategy for equal
k′s
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Appendix D. Test Results
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Figure D.21.: Graph over the weights on the Speed Direct children for equal k′s
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Figure D.22.: Graph over the success rates on the Speed Direct children for equal
k′s
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D.1. THE QUANTUM SEA RESULTS

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 605 608 0.995066 0.250112
Med Speed 217 218 0.995413 0.250156
Low Speed 309 312 0.990385 0.249523
High Speed 716 719 0.995828 0.250208

2

Keep Speed 642 643 0.998445 0.249854
Med Speed 223 223 1 0.250049
Low Speed 268 268 1 0.250049
High Speed 609 609 1 0.250049

3

Keep Speed 683 684 0.998538 0.249863
Med Speed 235 235 1 0.250046
Low Speed 282 282 1 0.250046
High Speed 602 602 1 0.250046

4

Keep Speed 717 717 1 0.25
Med Speed 231 231 1 0.25
Low Speed 286 286 1 0.25
High Speed 590 590 1 0.25

5

Keep Speed 639 639 1 0.25
Med Speed 236 236 1 0.25
Low Speed 274 274 1 0.25
High Speed 627 627 1 0.25

6

Keep Speed 621 622 0.998392 0.249849
Med Speed 239 239 1 0.25005
Low Speed 293 293 1 0.25005
High Speed 550 550 1 0.25005

7

Keep Speed 618 618 1 0.250114
Med Speed 205 205 1 0.250114
Low Speed 274 275 0.996364 0.249659
High Speed 575 575 1 0.250114

8

Keep Speed 590 590 1 0.25
Med Speed 217 217 1 0.25
Low Speed 287 287 1 0.25
High Speed 562 562 1 0.25

9

Keep Speed 592 592 1 0.25
Med Speed 213 213 1 0.25
Low Speed 273 273 1 0.25
High Speed 555 555 1 0.25

10

Keep Speed 539 541 0.996303 0.249653
Med Speed 225 225 1 0.250116
Low Speed 254 254 1 0.250116
High Speed 564 564 1 0.250116

Table D.12.: The calculations for the Speed node in the Arc strategy for equal k′s
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Appendix D. Test Results
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Figure D.23.: Graph over the weights on the Speed Arc children for equal k′s
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Figure D.24.: Graph over the success rates on the Speed Arc children for equal k′s
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D.1. THE QUANTUM SEA RESULTS

Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 917 927 0.989213 0.5

Spin Right 940 942 0.997877 0.5

2
Spin Left 882 892 0.988789 0.5

Spin Right 861 867 0.99308 0.5

3
Spin Left 896 902 0.993348 0.5

Spin Right 907 908 0.998899 0.5

4
Spin Left 915 917 0.997819 0.5

Spin Right 909 910 0.998901 0.5

5
Spin Left 910 914 0.995624 0.5

Spin Right 866 870 0.995402 0.5

6
Spin Left 841 848 0.991745 0.5

Spin Right 863 868 0.99424 0.5

7
Spin Left 835 841 0.992866 0.5

Spin Right 838 839 0.998808 0.5

8
Spin Left 830 833 0.996399 0.5

Spin Right 826 830 0.995181 0.5

9
Spin Left 816 821 0.99391 0.5

Spin Right 817 823 0.99271 0.5

10
Spin Left 767 772 0.993523 0.5

Spin Right 817 822 0.993917 0.5

Table D.13.: The calculations for the Spin node in the Arc strategy for equal k′s!"##$%
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Figure D.25.: Graph over the weights on the Spin Direction Arc children for equal
k′s
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Appendix D. Test Results
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Figure D.26.: Graph over the success rates on the Spin Direction Arc children for
equal k′s
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Figure D.27.: Graph over the weights on the Spin Direction Spiral children for
equal k′s
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D.1. THE QUANTUM SEA RESULTS

Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 606 612 0.990196 0.499122

Spin Right 707 709 0.997179 0.500878

2
Spin Left 451 456 0.989035 0.499409

Spin Right 475 478 0.993724 0.500591

3
Spin Left 489 495 0.987879 0.499228

Spin Right 497 500 0.994 0.500772

4
Spin Left 517 520 0.994231 0.501025

Spin Right 497 504 0.986111 0.498975

5
Spin Left 479 483 0.991718 0.49896

Spin Right 460 460 1 0.50104

6
Spin Left 409 412 0.992718 0.500274

Spin Right 419 423 0.990544 0.499726

7
Spin Left 368 370 0.994595 0.499655

Spin Right 375 376 0.99734 0.500345

8
Spin Left 389 391 0.994885 0.500086

Spin Right 343 345 0.994203 0.499914

9
Spin Left 366 367 0.997275 0.500026

Spin Right 340 341 0.997067 0.499974

10
Spin Left 338 338 1 0.500379

Spin Right 329 330 0.99697 0.499621

Table D.14.: The calculations for the Spin node in the Spiral strategy for equal k′s
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Figure D.28.: Graph over the success rates on the Spin Direction Spiral children
for equal k′s
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Appendix D. Test Results

Behavior Diversity

The results of the tests using k1 = 0.75 and k2 = 0.25.

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 301 1785 0.168627 0.223966

Arc 655 1961 0.334013 0.747159
Spiral 44 1584 0.0277778 0.0288749

2
Direct 95 881 0.107832 0.129009

Arc 879 1679 0.523526 0.844117
Spiral 26 772 0.0336788 0.0268737

3
Direct 117 875 0.133714 0.148933

Arc 869 1649 0.526986 0.834132
Spiral 14 754 0.0185676 0.016935

4
Direct 108 922 0.117137 0.138263

Arc 877 1693 0.518015 0.843974
Spiral 15 784 0.0191327 0.0177633

5
Direct 106 950 0.111579 0.134533

Arc 873 1707 0.511424 0.843056
Spiral 21 812 0.0258621 0.0224112

6
Direct 196 1206 0.162521 0.185803

Arc 777 1752 0.443493 0.790016
Spiral 27 996 0.0271084 0.0241809

7
Direct 198 1218 0.162562 0.186878

Arc 776 1762 0.440409 0.789558
Spiral 26 1002 0.0259481 0.0235636

8
Direct 190 1243 0.152856 0.179031

Arc 790 1766 0.447339 0.801391
Spiral 20 991 0.0201816 0.0195777

9
Direct 197 1217 0.161873 0.187725

Arc 787 1786 0.440649 0.795563
Spiral 16 986 0.0162272 0.0167118

10
Direct 184 1077 0.170845 0.183037

Arc 795 1652 0.481235 0.796028
Spiral 21 877 0.0239453 0.0209353

Table D.15.: The calculations for the Root node for k1 = 0.75 and k2 = 0.25
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D.1. THE QUANTUM SEA RESULTS
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Figure D.29.: Graph over the weights on the Root children for k1 = 0.75 and k2 =
0.25
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Figure D.30.: Graph over the success rates on the Root children for k1 = 0.75 and
k2 = 0.25
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Appendix D. Test Results

Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 426 426 1 0.25006
Med Speed 318 318 1 0.25006
Low Speed 538 539 0.998145 0.249944
High Speed 501 502 0.998008 0.249936

2

Keep Speed 226 226 1 0.250063
Med Speed 197 197 1 0.250063
Low Speed 209 209 1 0.250063
High Speed 248 249 0.995984 0.249811

3

Keep Speed 206 206 1 0.250286
Med Speed 175 176 0.994318 0.24993
Low Speed 225 227 0.991189 0.249733
High Speed 265 266 0.996241 0.250051

4

Keep Speed 220 222 0.990991 0.249697
Med Speed 188 188 1 0.250263
Low Speed 254 254 1 0.250263
High Speed 256 258 0.992248 0.249777

5

Keep Speed 249 249 1 0.250057
Med Speed 187 187 1 0.250057
Low Speed 239 239 1 0.250057
High Speed 274 275 0.996364 0.249829

6

Keep Speed 288 289 0.99654 0.250111
Med Speed 221 223 0.991031 0.249765
Low Speed 319 320 0.996875 0.250132
High Speed 372 374 0.994652 0.249992

7

Keep Speed 314 314 1 0.250096
Med Speed 263 263 1 0.250096
Low Speed 314 314 1 0.250096
High Speed 325 327 0.993884 0.249713

8

Keep Speed 328 329 0.99696 0.249908
Med Speed 249 249 1 0.250098
Low Speed 309 310 0.996774 0.249896
High Speed 355 355 1 0.250098

9

Keep Speed 276 276 1 0.250042
Med Speed 227 227 1 0.250042
Low Speed 340 340 1 0.250042
High Speed 373 374 0.997326 0.249875

10

Keep Speed 251 251 1 0.250104
Med Speed 229 229 1 0.250104
Low Speed 295 295 1 0.250104
High Speed 300 302 0.993377 0.249689

Table D.16.: The calculations for the Speed node in the Direct strategy for k1 = 0.75
and k2 = 0.25
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D.1. THE QUANTUM SEA RESULTS

!"##$%

&'(#)%

! " # $ % & ' ( ) * "!

!+#%*$!!!!

!+#%*%!!!!

!+#%*&!!!!

!+#%*'!!!!

!+#%*(!!!!

!+#%*)!!!!

!+#%**!!!!

!+#&!!!!!!

!+#&!"!!!!

!+#&!#!!!!

!+#&!$!!!!

!+#&!%!!!!

,-../0123.45

6..-0,-../

7890,-../

:./0,-../

;2<=0,-../

>?@4A@?528BC

D
.
2<
=
5

Figure D.31.: Graph over the weights on the Speed Direct children for k1 = 0.75 and
k2 = 0.25
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Figure D.32.: Graph over the success rates on the Speed Direct children for k1 =
0.75 and k2 = 0.25
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Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 642 645 0.995349 0.250014
Med Speed 260 261 0.996169 0.250066
Low Speed 320 320 1 0.250306
High Speed 719 727 0.988996 0.249614

2

Keep Speed 626 626 1 0.25
Med Speed 243 243 1 0.25
Low Speed 270 270 1 0.25
High Speed 530 530 1 0.25

3

Keep Speed 603 603 1 0.25
Med Speed 210 210 1 0.25
Low Speed 284 284 1 0.25
High Speed 545 545 1 0.25

4

Keep Speed 647 647 1 0.250058
Med Speed 283 283 1 0.250058
Low Speed 269 270 0.996296 0.249826
High Speed 484 484 1 0.250058

5

Keep Speed 643 643 1 0.25
Med Speed 268 268 1 0.25
Low Speed 285 285 1 0.25
High Speed 501 501 1 0.25

6

Keep Speed 613 613 1 0.25
Med Speed 265 265 1 0.25
Low Speed 318 318 1 0.25
High Speed 541 541 1 0.25

7

Keep Speed 584 584 1 0.25
Med Speed 296 296 1 0.25
Low Speed 356 356 1 0.25
High Speed 512 512 1 0.25

8

Keep Speed 619 619 1 0.250029
Med Speed 290 290 1 0.250029
Low Speed 307 307 1 0.250029
High Speed 538 539 0.998145 0.249913

9

Keep Speed 614 616 0.996753 0.249876
Med Speed 290 290 1 0.25008
Low Speed 328 328 1 0.25008
High Speed 541 542 0.998155 0.249964

10

Keep Speed 515 516 0.998062 0.249957
Med Speed 297 297 1 0.250078
Low Speed 326 327 0.996942 0.249887
High Speed 505 505 1 0.250078

Table D.17.: The calculations for the Speed node in the Arc strategy for k1 = 0.75
and k2 = 0.25
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Figure D.33.: Graph over the weights on the Speed Arc children for k1 = 0.75 and
k2 = 0.25
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Figure D.34.: Graph over the success rates on the Speed Arc children for k1 = 0.75
and k2 = 0.25
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Figure D.35.: Graph over the weights on the Spin Direction Arc children for k1 =
0.75 and k2 = 0.25
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Figure D.36.: Graph over the success rates on the Spin Arc Spiral children for
k1 = 0.75 and k2 = 0.25
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Figure D.37.: Graph over the weights on the Spin Direction Spiral children for k1 =
0.75 and k2 = 0.25
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Figure D.38.: Graph over the success rates on the Spin Direction Spiral children
for k1 = 0.75 and k2 = 0.25
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Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 992 996 0.995984 0.5

Spin Right 961 965 0.995855 0.5

2
Spin Left 842 848 0.992925 0.5

Spin Right 827 831 0.995187 0.5

3
Spin Left 794 798 0.994987 0.5

Spin Right 848 851 0.996475 0.5

4
Spin Left 851 855 0.995322 0.5

Spin Right 833 838 0.994033 0.5

5
Spin Left 868 871 0.996556 0.5

Spin Right 829 836 0.991627 0.5

6
Spin Left 869 875 0.993143 0.5

Spin Right 868 877 0.989738 0.5

7
Spin Left 904 912 0.991228 0.5

Spin Right 844 850 0.992941 0.5

8
Spin Left 865 869 0.995397 0.5

Spin Right 890 897 0.992196 0.5

9
Spin Left 855 858 0.996503 0.5

Spin Right 921 928 0.992457 0.5

10
Spin Left 814 817 0.996328 0.5

Spin Right 831 835 0.99521 0.5

Table D.18.: The calculations for the Spin node in the Arc strategy for k1 = 0.75 and
k2 = 0.25
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Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 760 768 0.989583 0.5

Spin Right 724 734 0.986376 0.5

2
Spin Left 355 361 0.98338 0.5

Spin Right 387 390 0.992308 0.5

3
Spin Left 399 400 0.9975 0.5

Spin Right 344 347 0.991354 0.5

4
Spin Left 365 366 0.997268 0.5

Spin Right 397 399 0.994987 0.5

5
Spin Left 388 395 0.982278 0.5

Spin Right 398 400 0.995 0.5

6
Spin Left 446 457 0.97593 0.5

Spin Right 486 490 0.991837 0.5

7
Spin Left 510 515 0.990291 0.5

Spin Right 451 453 0.995585 0.5

8
Spin Left 460 465 0.989247 0.5

Spin Right 479 481 0.995842 0.5

9
Spin Left 444 445 0.997753 0.5

Spin Right 494 496 0.995968 0.5

10
Spin Left 401 404 0.992574 0.5

Spin Right 441 444 0.993243 0.5

Table D.19.: The calculations for the Spin node in the Spiral strategy for k1 = 0.75
and k2 = 0.25
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Appendix D. Test Results

Challenge

The results of the tests using k1 = 0.25 and k2 = 0.75.

Root
Calculation Children Succeeds Runs Success Rate Weight

0
Direct 0.33

Arc 0.33
Spiral 0.33

1
Direct 264 1688 0.156398 0.0727333

Arc 686 1927 0.355994 0.926097
Spiral 50 1469 0.0340368 0.00116986

2
Direct 199 1346 0.147845 0.0437964

Arc 770 1801 0.42754 0.955541
Spiral 31 990 0.0313131 0.000662867

3
Direct 139 1208 0.115066 0.0170102

Arc 839 1637 0.512523 0.982586
Spiral 22 739 0.02977 0.0004034

4
Direct 147 1190 0.123529 0.0211411

Arc 822 1647 0.499089 0.978015
Spiral 31 769 0.0403121 0.00084434

5
Direct 269 1609 0.167185 0.0766797

Arc 714 1924 0.371102 0.923177
Spiral 17 1217 0.0139688 0.000143209

6
Direct 250 1558 0.160462 0.0630921

Arc 723 1849 0.391022 0.936483
Spiral 27 1138 0.0237258 0.000424824

7
Direct 274 1594 0.171895 0.0815198

Arc 697 1881 0.370548 0.917991
Spiral 29 1201 0.0241465 0.00048867

8
Direct 264 1692 0.156028 0.0722255

Arc 702 1970 0.356345 0.927097
Spiral 34 1272 0.0267296 0.000677836

9
Direct 249 1656 0.150362 0.0645255

Arc 710 1959 0.36243 0.934424
Spiral 41 1245 0.0329317 0.00105062

10
Direct 260 1624 0.160099 0.0710868

Arc 709 1924 0.368503 0.928341
Spiral 31 1211 0.0255987 0.000571787

Table D.20.: The calculations for the Root node for k1 = 0.25 and k2 = 0.75

178 Perceived Challenge



D.1. THE QUANTUM SEA RESULTS

!"##$%

&'(#)%

! " # $ % & ' ( ) * "!

!+!!!!!!!!

!+#!!!!!!!

!+%!!!!!!!

!+'!!!!!!!

!+)!!!!!!!

"+!!!!!!!!

"+#!!!!!!!

,--.

/0123.

413

560178

9783:87.0-;<

=
2
0>
?
.

Figure D.39.: Graph over the weights on the Root children for k1 = 0.25 and k2 =
0.75

!"##$%

&'(#)%

! " # $ % & ' ( ) !*

*+********

*+!*******

*+"*******

*+#*******

*+$*******

*+%*******

*+&*******

,--.

/0123.

413

560178

9783:87.0-;

5
:
3
3
2
<
<
=,
7
.2

Figure D.40.: Graph over the success rates on the Root children for k1 = 0.25 and
k2 = 0.75
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Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 376 377 0.997347 0.249959
Med Speed 334 335 0.997015 0.249896
Low Speed 477 478 0.997908 0.250064
High Speed 497 498 0.997992 0.25008

2

Keep Speed 339 339 1 0.25025
Med Speed 281 281 1 0.25025
Low Speed 351 351 1 0.25025
High Speed 373 375 0.994667 0.249249

3

Keep Speed 282 282 1 0.250525
Med Speed 266 269 0.988848 0.248426
Low Speed 316 316 1 0.250525
High Speed 341 341 1 0.250525

4

Keep Speed 296 296 1 0.250143
Med Speed 270 270 1 0.250143
Low Speed 295 295 1 0.250143
High Speed 328 329 0.99696 0.249572

5

Keep Speed 381 381 1 0.250234
Med Speed 346 347 0.997118 0.249693
Low Speed 473 474 0.99789 0.249838
High Speed 407 407 1 0.250234

6

Keep Speed 402 402 1 0.250228
Med Speed 277 277 1 0.250228
Low Speed 410 412 0.995146 0.249316
High Speed 467 467 1 0.250228

7

Keep Speed 406 406 1 0.250213
Med Speed 315 315 1 0.250213
Low Speed 433 433 1 0.250213
High Speed 438 440 0.995455 0.24936

8

Keep Speed 400 400 1 0.250232
Med Speed 337 338 0.997041 0.249677
Low Speed 450 450 1 0.250232
High Speed 503 504 0.998016 0.24986

9

Keep Speed 367 368 0.997283 0.249618
Med Speed 328 328 1 0.250127
Low Speed 478 478 1 0.250127
High Speed 482 482 1 0.250127

10

Keep Speed 364 365 0.99726 0.249713
Med Speed 369 369 1 0.250228
Low Speed 417 417 1 0.250228
High Speed 472 473 0.997886 0.249831

Table D.21.: The calculations for the Speed node in the Direct strategy for k1 = 0.25
and k2 = 0.75
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Figure D.41.: Graph over the weights on the Speed Direct children for k1 = 0.25 and
k2 = 0.75
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Figure D.42.: Graph over the success rates on the Speed Direct children for k1 =
0.25 and k2 = 0.75
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Speed
Calculation Children Succeeds Runs Success Rate Weight

0

Keep Speed 0.25
Med Speed 0.25
Low Speed 0.25
High Speed 0.25

1

Keep Speed 684 684 1 0.25036
Med Speed 340 341 0.997067 0.249809
Low Speed 341 342 0.997076 0.249811
High Speed 551 552 0.998188 0.25002

2

Keep Speed 667 667 1 0.250164
Med Speed 286 287 0.996516 0.249509
Low Speed 317 317 1 0.250164
High Speed 525 525 1 0.250164

3

Keep Speed 533 533 1 0.25
Med Speed 328 328 1 0.25
Low Speed 323 323 1 0.25
High Speed 444 444 1 0.25

4

Keep Speed 527 527 1 0.250275
Med Speed 299 299 1 0.250275
Low Speed 340 342 0.994152 0.249176
High Speed 467 467 1 0.250275

5

Keep Speed 682 682 1 0.25
Med Speed 307 307 1 0.25
Low Speed 316 316 1 0.25
High Speed 602 602 1 0.25

6

Keep Speed 635 635 1 0.250153
Med Speed 269 269 1 0.250153
Low Speed 323 323 1 0.250153
High Speed 612 614 0.996743 0.249541

7

Keep Speed 645 645 1 0.250221
Med Speed 277 277 1 0.250221
Low Speed 319 320 0.996875 0.249634
High Speed 629 630 0.998413 0.249923

8

Keep Speed 703 703 1 0.25
Med Speed 260 260 1 0.25
Low Speed 302 302 1 0.25
High Speed 691 691 1 0.25

9

Keep Speed 721 721 1 0.250075
Med Speed 271 271 1 0.250075
Low Speed 323 323 1 0.250075
High Speed 626 627 0.998405 0.249776

10

Keep Speed 699 699 1 0.250074
Med Speed 246 246 1 0.250074
Low Speed 328 328 1 0.250074
High Speed 637 638 0.998433 0.249779

Table D.22.: The calculations for the Speed node in the Arc strategy for k1 = 0.25
and k2 = 0.75
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Figure D.43.: Graph over the weights on the Speed Arc children for k1 = 0.25 and
k2 = 0.75
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Figure D.44.: Graph over the success rates on the Speed Arc children for k1 = 0.25
and k2 = 0.75
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Figure D.45.: Graph over the weights on the Spin Direction Arc children for k1 =
0.25 and k2 = 0.75
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Figure D.46.: Graph over the success rates on the Spin Direction Arc children for
k1 = 0.25 and k2 = 0.75
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Figure D.47.: Graph over the weights on the Spin Direction Spiral children for k1 =
0.25 and k2 = 0.75
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Figure D.48.: Graph over the success rates on the Spin Direction Spiral children
for k1 = 0.25 and k2 = 0.75
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Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 993 997 0.995988 0.5

Spin Right 926 930 0.995699 0.5

2
Spin Left 891 894 0.996644 0.5

Spin Right 905 907 0.997795 0.5

3
Spin Left 799 803 0.995019 0.5

Spin Right 829 834 0.994005 0.5

4
Spin Left 809 815 0.992638 0.5

Spin Right 826 832 0.992788 0.5

5
Spin Left 990 999 0.990991 0.5

Spin Right 917 925 0.991351 0.5

6
Spin Left 938 942 0.995754 0.5

Spin Right 903 907 0.99559 0.5

7
Spin Left 940 944 0.995763 0.5

Spin Right 932 937 0.994664 0.5

8
Spin Left 935 942 0.992569 0.5

Spin Right 1021 1028 0.993191 0.5

9
Spin Left 979 988 0.990891 0.5

Spin Right 963 971 0.991761 0.5

10
Spin Left 932 940 0.991489 0.5

Spin Right 979 984 0.994919 0.5

Table D.23.: The calculations for the Spin node in the Arc strategy for k1 = 0.25 and
k2 = 0.75
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Spin
Calculation Children Succeeds Runs Success Rate Weight

0
Spin Left 0.5

Spin Right 0.5

1
Spin Left 680 685 0.992701 0.500969

Spin Right 716 725 0.987586 0.499031

2
Spin Left 484 487 0.99384 0.50083

Spin Right 469 474 0.989451 0.49917

3
Spin Left 371 375 0.989333 0.500262

Spin Right 328 332 0.987952 0.499738

4
Spin Left 379 382 0.992147 0.501159

Spin Right 353 358 0.986034 0.498841

5
Spin Left 577 580 0.994828 0.500934

Spin Right 587 593 0.989882 0.499066

6
Spin Left 561 566 0.991166 0.500463

Spin Right 526 532 0.988722 0.499537

7
Spin Left 544 549 0.990893 0.500797

Spin Right 593 601 0.986689 0.499203

8
Spin Left 586 590 0.99322 0.50086

Spin Right 611 618 0.988673 0.49914

9
Spin Left 583 590 0.988136 0.499606

Spin Right 607 613 0.990212 0.500394

10
Spin Left 587 591 0.993232 0.500376

Spin Right 566 571 0.991243 0.499624

Table D.24.: The calculations for the Spin node in the Spiral strategy for k1 = 0.25
and k2 = 0.75
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D.2. Constructed Example

D.2.1. Local Method

Local Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.633975
Sneak Attack 0.25 0.366025

Direct Attack
Close Range 0.375 0.366025
Long Range 0.125 0.211325

Medium Range 0.5 0.5 0.5 0.42265

Sneak Avoid
Move Around 0.8 0.666667
Keep In Cover 0.2 0.333333

Direct Attack(Sneak Attack)
Close Range 0.75 0.568235
Long Range 0.05 0.145497

Medium Range 0.2 0.290994

Table D.25.: A summation table of the results using the local method with equal
ks

Local Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.568235
Sneak Attack 0.25 0.431765

Direct Attack
Close Range 0.375 0.352808
Long Range 0.125 0.268076

Medium Range 0.75 0.25 0.5 0.379116

Sneak Avoid
Move Around 0.8 0.585786
Keep In Cover 0.2 0.414214

Direct Attack(Sneak Attack)
Close Range 0.75 0.449087
Long Range 0.05 0.228196

Medium Range 0.2 0.322717

Table D.26.: A summation table of the results using the local method for k1 = 0.75
and k2 = 0.25
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D.2. CONSTRUCTED EXAMPLE

Local Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.695076
Sneak Attack 0.25 0.304924

Direct Attack
Close Range 0.375 0.373204
Long Range 0.125 0.163721

Medium Range 0.25 0.75 0.5 0.463074

Sneak Avoid
Move Around 0.8 0.738796
Keep In Cover 0.2 0.261204

Direct Attack(Sneak Attack)
Close Range 0.75 0.665652
Long Range 0.05 0.0873331

Medium Range 0.2 0.247015

Table D.27.: A summation table of the results using the local method for k1 = 0.25
and k2 = 0.75

D.2.2. Global Method

Global Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.584268
Sneak Attack 0.25 0.415732

Direct Attack
Close Range 0.375 0.366025
Long Range 0.125 0.211325

Medium Range 0.5 0.5 0.5 0.42265

Sneak Avoid
Move Around 0.8 0.666667
Keep In Cover 0.2 0.333333

Direct Attack(Sneak Attack)
Close Range 0.75 0.563508
Long Range 0.05 0.145497

Medium Range 0.2 0.290994

Table D.28.: A summation table of the results using the global method for equal ks
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Appendix D. Test Results

Global Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.465964
Sneak Attack 0.25 0.534036

Direct Attack
Close Range 0.375 0.352808
Long Range 0.125 0.268076

Medium Range 0.75 0.25 0.5 0.379116

Sneak Avoid
Move Around 0.8 0.585786
Keep In Cover 0.2 0.414214

Direct Attack(Sneak Attack)
Close Range 0.75 0.449087
Long Range 0.05 0.228196

Medium Range 0.2 0.322717

Table D.29.: A summation table of the results using the global method for k1 = 0.75
and k2 = 0.25

Global Method
Selector Children k1 k2 Success Rate Calculation

Attack
Direct Attack 0.75 0.678604
Sneak Attack 0.25 0.321396

Direct Attack
Close Range 0.375 0.373204
Long Range 0.125 0.163721

Medium Range 0.25 0.75 0.5 0.463074

Sneak Avoid
Move Around 0.8 0.738796
Keep In Cover 0.2 0.261204

Direct Attack(Sneak Attack)
Close Range 0.75 0.665652
Long Range 0.05 0.0873331

Medium Range 0.2 0.247015

Table D.30.: A summation table of the results using the global method for k1 = 0.25
and k2 = 0.75
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